Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Sci Rep ; 12(1): 2389, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684112

ABSTRACT

Cardiac damage in non-severe patients with coronavirus disease 2019 (COVID-19) is poorly explored. This study aimed to explore the manifestations of cardiac damage at presentation in non-severe patients with COVID-19. In this study, 113 non-severe patients with COVID-19 were grouped according to the duration from symptoms onset to hospital admission: group 1 (≤ 1 week, n = 27), group 2 (> 1 to 2 weeks, n = 28), group 3 (> 2 to 3 weeks, n = 27), group 4 (> 3 weeks, n = 31). Clinical, cardiovascular, and radiological data on hospital admission were compared across the four groups. The level of high sensitivity troponin I (hs-cTnI) in group 2 [10.25 (IQR 6.75-15.63) ng/L] was significantly higher than those in group 1 [1.90 (IQR 1.90-8.80) ng/L] and group 4 [1.90 (IQR 1.90-5.80) ng/L] (all Pbonferroni < 0.05). The proportion of patients who had a level of hs-cTnI ≥ 5 ng/L in group 2 (85.71%) was significantly higher than those in the other three groups (37.04%, 51.85%, and 25.81%, respectively) (all Pbonferroni < 0.05). Compared with patients with hs-cTnI under 5 ng/L, those with hs-cTnI ≥ 5 ng/L had lower lymphocyte count (P = 0.000) and SpO2 (P = 0.002) and higher CRP (P = 0.000). Patients with hs-cTnI ≥ 5 ng/L had a higher incidence of bilateral pneumonia (P = 0.000) and longer hospital length of stay (P = 0.000). In conclusion, non-severe patients with COVID-19 in the second week after symptoms onset were most likely to suffer cardiac damage. A detectable level of hs-cTnI ≥ 5 ng/L might be a manifestation of early cardiac damage in the patients.


Subject(s)
COVID-19/complications , Heart Diseases/blood , Troponin I/blood , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/diagnostic imaging , Female , Heart Diseases/virology , Humans , Lymphocyte Count , Male , Middle Aged , Myoglobin/metabolism , Natriuretic Peptide, Brain/blood , Radiography, Thoracic , Retrospective Studies
2.
Endocr Metab Immune Disord Drug Targets ; 21(6): 980-993, 2021.
Article in English | MEDLINE | ID: covidwho-1613453

ABSTRACT

Biomarkers are increasingly recognized to have significant clinical value in early identification and progression of various cardiovascular diseases. There are many heart conditions, such as congestive heart failure (CHF), ischemic heart diseases (IHD), and diabetic cardiomyopathy (DCM), and cardiac remodeling, in which the severity of the cardiac pathology can be mirrored through these cardiac biomarkers. From the emergency department (ED) evaluation of acute coronary syndromes (ACS) or suspected acute myocardial infarction (AMI) with cardiac marker Troponin to the diagnosis of chronic conditions like Heart Failure (HF) with natriuretic peptides, like B-type natriuretic peptide (BNP), N-terminal pro-B- type natriuretic peptide (Nt-proBNP) and mid regional pro-atrial natriuretic peptide (MR- proANP), their use is continuously increasing. Their clinical importance has led to the discovery of newer biomarkers, such as the soluble source of tumorigenicity 2 (sST2), galectin-3 (Gal-3), growth differentiation factor-15 (GDF-15), and various micro ribonucleic acids (miRNAs). Since cardiac pathophysiology involves a complex interplay between inflammatory, genetic, neurohormonal, and biochemical levels, these biomarkers could be enzymes, hormones, and biologic substances showing cardiac injury, stress, and malfunction. Therefore, multi-marker approaches with different combinations of novel cardiac biomarkers, and continual assessment of cardiac biomarkers are likely to improve cardiac risk prediction, stratification, and overall patient wellbeing. On the other hand, these biomarkers may reflect coexisting or isolated disease processes in different organ systems other than the cardiovascular system. Therefore, knowledge of cardiac biomarkers is imperative. In this article, we have reviewed the role of cardiac biomarkers and their use in the diagnosis and prognosis of various cardiovascular diseases from different investigations conducted in recent years.


Subject(s)
COVID-19/blood , COVID-19/diagnosis , Heart Diseases/blood , Heart Diseases/diagnosis , Animals , Biomarkers/blood , COVID-19/epidemiology , Heart Diseases/epidemiology , Humans , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Troponin T/blood
3.
Nutrients ; 13(9)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430930

ABSTRACT

Vitamin B6 is a fascinating molecule involved in the vast majority of changes in the human body because it is a coenzyme involved in over 150 biochemical reactions. It is active in the metabolism of carbohydrates, lipids, amino acids, and nucleic acids, and participates in cellular signaling. It is an antioxidant and a compound with the ability to lower the advanced glycation end products (AGE) level. In this review, we briefly summarize its involvement in biochemical pathways and consider whether its deficiency may be associated with various diseases such as diabetes, heart disease, cancer, or the prognosis of COVID-19.


Subject(s)
Nutritional Physiological Phenomena , Nutritional Status , Vitamin B 6 Deficiency/complications , Vitamin B 6/blood , COVID-19/blood , Diabetes Mellitus/blood , Heart Diseases/blood , Humans , Neoplasms/blood , Risk Factors , SARS-CoV-2 , Signal Transduction
4.
Heart Rhythm ; 18(6): 855-861, 2021 06.
Article in English | MEDLINE | ID: covidwho-1390228

ABSTRACT

BACKGROUND: Accumulating data suggest blood biomarkers could inform stroke etiology. OBJECTIVE: The purpose of this study was to investigate the performance of multiple blood biomarkers in elucidating stroke etiology with a focus on new-onset atrial fibrillation (AF) and cardioembolism. METHODS: Between January and December 2017, information on clinical and laboratory parameters and stroke characteristics was prospectively collected from ischemic stroke patients recruited from the National University Hospital, Singapore. Multiple blood biomarkers (N-terminal pro-brain natriuretic peptide [NT-proBNP], d-dimer, S100ß, neuron-specific enolase, vitamin D, cortisol, interleukin-6, insulin, uric acid, and albumin) were measured in plasma. These variables were compared with stroke etiology and the risk of new-onset AF and cardioembolism using multivariable regression methods. RESULTS: Of the 515 ischemic stroke patients (mean age 61 years; 71% men), 44 (8.5%) were diagnosed with new-onset AF, and 75 (14.5%) had cardioembolism. The combination of 2 laboratory parameters (total cholesterol ≤169 mg/dL; triglycerides ≤44.5 mg/dL) and 3 biomarkers (NT-proBNP ≥294 pg/mL; S100ß ≥64 pg/mL; cortisol ≥471 nmol/l) identified patients with new-onset AF (negative predictive value [NPV] 90%; positive predictive value [PPV] 73%; area under curve [AUC] 85%). The combination of 2 laboratory parameters (total cholesterol ≤169 mg/dL; triglycerides ≤44.5 mg/dL) and 2 biomarkers (NT-proBNP ≥507 pg/mL; S100ß ≥65 pg/mL) identified those with cardioembolism (NPV 86%; PPV 78%; AUC 87%). Adding clinical predictors did not improve the performance of these models. CONCLUSION: Blood biomarkers could identify patients with increased likelihood of cardioembolism and direct the search for occult AF.


Subject(s)
Atrial Fibrillation/diagnosis , Biomarkers/blood , Embolism/diagnosis , Heart Diseases/diagnosis , Ischemic Stroke/diagnosis , Aged , Atrial Fibrillation/blood , Atrial Fibrillation/complications , Embolism/blood , Embolism/etiology , Female , Follow-Up Studies , Heart Diseases/blood , Heart Diseases/etiology , Humans , Ischemic Stroke/blood , Ischemic Stroke/etiology , Male , Middle Aged , Retrospective Studies
5.
Am Heart J ; 242: 61-70, 2021 12.
Article in English | MEDLINE | ID: covidwho-1356105

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) may cause myocardial injury and myocarditis, and reports of persistent cardiac pathology after COVID-19 have raised concerns of long-term cardiac consequences. We aimed to assess the presence of abnormal cardiovascular resonance imaging (CMR) findings in patients recovered from moderate-to-severe COVID-19, and its association with markers of disease severity in the acute phase. METHODS: Fifty-eight (49%) survivors from the prospective COVID MECH study, underwent CMR median 175 [IQR 105-217] days after COVID-19 hospitalization. Abnormal CMR was defined as left ventricular ejection fraction (LVEF) <50% or myocardial scar by late gadolinium enhancement. CMR indices were compared to healthy controls (n = 32), and to circulating biomarkers measured during the index hospitalization. RESULTS: Abnormal CMR was present in 12 (21%) patients, of whom 3 were classified with major pathology (scar and LVEF <50% or LVEF <40%). There was no difference in the need of mechanical ventilation, length of hospital stay, and vital signs between patients with vs without abnormal CMR after 6 months. Severe acute respiratory syndrome coronavirus 2 viremia and concentrations of inflammatory biomarkers during the index hospitalization were not associated with persistent CMR pathology. Cardiac troponin T and N-terminal pro-B-type natriuretic peptide concentrations on admission, were higher in patients with CMR pathology, but these associations were not significant after adjusting for demographics and established cardiovascular disease. CONCLUSIONS: CMR pathology 6 months after moderate-to-severe COVID-19 was present in 21% of patients and did not correlate with severity of the disease. Cardiovascular biomarkers during COVID-19 were higher in patients with CMR pathology, but with no significant association after adjusting for confounders. TRIAL REGISTRATION: COVID MECH Study ClinicalTrials.gov Identifier: NCT04314232.


Subject(s)
COVID-19/complications , Cicatrix/diagnostic imaging , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Left/diagnostic imaging , Adult , Aged , Biomarkers/blood , COVID-19/blood , Cicatrix/etiology , Female , Gadolinium , Heart Diseases/blood , Heart Diseases/etiology , Heart Diseases/physiopathology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , Severity of Illness Index , Stroke Volume , Survivors , Troponin T/blood , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
6.
PLoS One ; 16(6): e0252799, 2021.
Article in English | MEDLINE | ID: covidwho-1259248

ABSTRACT

AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) enabling entrance of the virus into cells and causing the infection termed coronavirus disease of 2019 (COVID-19). Here, we investigate associations between plasma ACE2 and outcome of COVID-19. METHODS AND RESULTS: This analysis used data from a large longitudinal study of 306 COVID-19 positive patients and 78 COVID-19 negative patients (MGH Emergency Department COVID-19 Cohort). Comprehensive clinical data were collected on this cohort, including 28-day outcomes. The samples were run on the Olink® Explore 1536 platform which includes measurement of the ACE2 protein. High admission plasma ACE2 in COVID-19 patients was associated with increased maximal illness severity within 28 days with OR = 1.8, 95%-CI: 1.4-2.3 (P < 0.0001). Plasma ACE2 was significantly higher in COVID-19 patients with hypertension compared with patients without hypertension (P = 0.0045). Circulating ACE2 was also significantly higher in COVID-19 patients with pre-existing heart conditions and kidney disease compared with patients without these pre-existing conditions (P = 0.0363 and P = 0.0303, respectively). CONCLUSION: This study suggests that measuring plasma ACE2 is potentially valuable in predicting COVID-19 outcomes. Further, ACE2 could be a link between COVID-19 illness severity and its established risk factors hypertension, pre-existing heart disease and pre-existing kidney disease.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19 , Heart Diseases , Hospitalization , Kidney Diseases , SARS-CoV-2/metabolism , Adolescent , Adult , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Comorbidity , Female , Heart Diseases/blood , Heart Diseases/mortality , Heart Diseases/therapy , Humans , Kidney Diseases/blood , Kidney Diseases/mortality , Kidney Diseases/therapy , Male , Middle Aged , Severity of Illness Index
7.
Circ J ; 85(6): 944-947, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1231251

ABSTRACT

BACKGROUND: Several studies have reported elevated troponin levels in coronavirus disease 2019 (COVID-19) patients, so we investigated myocardial damage by measuring high-sensitivity troponin T (hsTnT) levels and analyzed the relationship with comorbidities.Methods and Results:Of 209 patients who recently recovered from COVID-19, 65% had an elevated hsTnT level that was higher than levels in patients with acute phase infection despite most patients (79%) having a mild illness. The hsTnT levels correlated with disease severity, sex, comorbidities, and ACEi and ARB use. CONCLUSIONS: Myocardial damage occurs in the recovery phase of COVID-19, and its evaluation, regardless of patient age, should be considered.


Subject(s)
COVID-19/therapy , Heart Diseases/blood , Troponin T/blood , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , Comorbidity , Female , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Humans , Japan/epidemiology , Male , Middle Aged , Registries , Remission Induction , Retrospective Studies , Risk Assessment , Risk Factors , Sex Factors , Time Factors , Treatment Outcome , Up-Regulation , Young Adult
10.
Arch Iran Med ; 24(2): 152-163, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1106764

ABSTRACT

BACKGROUND: The newly emerged coronavirus disease 2019 (COVID-19) seems to involve different organs, including the cardiovascular system. We systematically reviewed COVID-19 cardiac complications and calculated their pooled incidences. Secondarily, we compared the cardiac troponin I (cTnI) level between the surviving and expired patients. METHODS: A systematic search was conducted for manuscripts published from December 1, 2019 to April 16, 2020. Cardiovascular complications, along with the levels of cTnI, creatine kinase (CK), and creatine kinase MB (CK-MB) in hospitalized PCR-confirmed COVID-19 patients were extracted. The pooled incidences of the extracted data were calculated, and the unadjusted cTnI level was compared between the surviving and expired patients. RESULTS: Out of 1094 obtained records, 22 studies on a total of 4,157 patients were included. The pooled incidence rate of arrhythmia was 10.11%. Furthermore, myocardial injury had a pooled incidence of 17.85%, and finally, the pooled incidence for heart failure was 22.34%. The pooled incidence rates of cTnI, CK-MB, and CK elevations were also reported at 15.16%, 10.92%, and 12.99%, respectively. Moreover, the pooled level of unadjusted cTnI was significantly higher in expired cases compared with the surviving (mean difference = 31.818, 95% CI = 17.923-45.713, P value <0.001). CONCLUSION: COVID-19 can affect different parts of the heart; however, the myocardium is more involved.


Subject(s)
COVID-19/complications , Creatine Kinase, MB Form/blood , Heart Diseases/etiology , SARS-CoV-2 , Troponin I/blood , Biomarkers/blood , COVID-19/epidemiology , Heart Diseases/blood , Heart Diseases/diagnosis , Humans , Pandemics
11.
PLoS One ; 16(2): e0247800, 2021.
Article in English | MEDLINE | ID: covidwho-1105824

ABSTRACT

Myocardial injury in hospitalized patients is associated with poor prognosis. This study aimed to evaluate risk factors for myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) and its prognostic value. We retrieved all consecutive patients who were hospitalized in internal medicine departments in a tertiary medical center from February 9th, 2020 to August 28th with a diagnosis of COVID-19. A total of 559 adult patients were hospitalized in the Sheba Medical Center with a diagnosis of COVID-19, 320 (57.24%) of whom were tested for troponin levels within 24-hours of admission, and 91 (28.44%) had elevated levels. Predictors for elevated troponin levels were age (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.01-1.06), female sex (OR, 3.03; 95% CI 1.54-6.25), low systolic blood pressure (OR, 5.91; 95% CI 2.42-14.44) and increased creatinine level (OR, 2.88; 95% CI 1.44-5.73). The risk for death (hazard ratio [HR] 4.32, 95% CI 2.08-8.99) and a composite outcome of invasive ventilation support and death (HR 1.96, 95% CI 1.15-3.37) was significantly higher among patients who had elevated troponin levels. In conclusion, in hospitalized patients with COVID-19, elevated troponin levels are associated with poor prognosis. Hence, troponin levels may be used as an additional tool for risk stratification and a decision guide in patients hospitalized with COVID-19.


Subject(s)
COVID-19/complications , Heart Diseases/complications , Aged , Aged, 80 and over , Blood Pressure , COVID-19/blood , COVID-19/diagnosis , Female , Heart Diseases/blood , Heart Diseases/diagnosis , Hospitalization , Humans , Male , Middle Aged , Myocardium/pathology , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Troponin/analysis
12.
Eur Heart J Acute Cardiovasc Care ; 10(1): 6-15, 2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1096511

ABSTRACT

AIMS: To investigate the association between levels of highly sensitive troponin I (hs-troponin I) and mortality in novel coronavirus disease 2019 (COVID-19) patients with cardiac injury. METHODS AND RESULTS: We retrospectively reviewed the medical records of all COVID-19 patients with increased levels of hs-troponin I from two hospitals in Wuhan, China. Demographic information, laboratory test results, cardiac ultrasonographic findings, and electrocardiograms were collected, and their predictive value on in-hospital mortality was explored using multivariable logistic regression. Of 1500 patients screened, 242 COVID-19 patients were enrolled in our study. Their median age was 68 years, and (48.8%) had underlying cardiovascular diseases. One hundred and seventy-six (72.7%) patients died during hospitalization. Multivariable logistic regression showed that C-reactive protein (>75.5 mg/L), D-dimer (>1.5 µg/mL), and acute respiratory distress syndrome were risk factors of mortality, and the peak hs-troponin I levels (>259.4 pg/mL) instead of the hs-troponin I levels at admission was predictor of death. The area under the receiver operating characteristic curve of the peak levels of hs-troponin I for predicting in-hospital mortality was 0.79 (95% confidence interval, 0.73-0.86; sensitivity, 0.80; specificity, 0.72; P < 0.0001). CONCLUSION: Our results demonstrated that the risk of in-hospital death among COVID-19 patients with cardiac injury can be predicted by the peak levels of hs-troponin I during hospitalization and was significantly associated with oxygen supply-demand mismatch, inflammation, and coagulation.


Subject(s)
COVID-19/blood , COVID-19/mortality , Heart Diseases/blood , Heart Diseases/mortality , Hospital Mortality , Troponin I/blood , Aged , COVID-19/complications , Female , Heart Diseases/etiology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Sensitivity and Specificity
13.
PLoS One ; 16(2): e0246732, 2021.
Article in English | MEDLINE | ID: covidwho-1079372

ABSTRACT

BACKGROUND: A high proportion of COVID-19 patients were reported to have cardiac involvements. Data pertaining to cardiac sequalae is of urgent importance to define subsequent cardiac surveillance. METHODS: We performed a systematic cardiac screening for 97 consecutive COVID-19 survivors including electrocardiogram (ECG), echocardiography, serum troponin and NT-proBNP assay 1-4 weeks after hospital discharge. Treadmill exercise test and cardiac magnetic resonance imaging (CMR) were performed according to initial screening results. RESULTS: The mean age was 46.5 ± 18.6 years; 53.6% were men. All were classified with non-severe disease without overt cardiac manifestations and did not require intensive care. Median hospitalization stay was 17 days and median duration from discharge to screening was 11 days. Cardiac abnormalities were detected in 42.3% including sinus bradycardia (29.9%), newly detected T-wave abnormality (8.2%), elevated troponin level (6.2%), newly detected atrial fibrillation (1.0%), and newly detected left ventricular systolic dysfunction with elevated NT-proBNP level (1.0%). Significant sinus bradycardia with heart rate below 50 bpm was detected in 7.2% COVID-19 survivors, which appeared to be self-limiting and recovered over time. For COVID-19 survivors with persistent elevation of troponin level after discharge or newly detected T wave abnormality, echocardiography and CMR did not reveal any evidence of infarct, myocarditis, or left ventricular systolic dysfunction. CONCLUSION: Cardiac abnormality is common amongst COVID-survivors with mild disease, which is mostly self-limiting. Nonetheless, cardiac surveillance in form of ECG and/or serum biomarkers may be advisable to detect more severe cardiac involvement including atrial fibrillation and left ventricular dysfunction.


Subject(s)
COVID-19/physiopathology , Heart Diseases/physiopathology , Adult , Aged , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Electrocardiography , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , SARS-CoV-2/isolation & purification , Survival Analysis , Survivors , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/physiopathology
15.
Hypertension ; 76(4): 1104-1112, 2020 10.
Article in English | MEDLINE | ID: covidwho-992137

ABSTRACT

The prognostic power of circulating cardiac biomarkers, their utility, and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multicentered retrospective study, we enrolled 3219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effects Cox model, after adjusting for age, sex, and comorbidities, the adjusted hazard ratio of 28-day mortality for hs-cTnI (high-sensitivity cardiac troponin I) was 7.12 ([95% CI, 4.60-11.03] P<0.001), (NT-pro)BNP (N-terminal pro-B-type natriuretic peptide or brain natriuretic peptide) was 5.11 ([95% CI, 3.50-7.47] P<0.001), CK (creatine phosphokinase)-MB was 4.86 ([95% CI, 3.33-7.09] P<0.001), MYO (myoglobin) was 4.50 ([95% CI, 3.18-6.36] P<0.001), and CK was 3.56 ([95% CI, 2.53-5.02] P<0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 19%-50% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoff values of these biomarkers might be much lower than the current reference standards. These findings can assist in better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19-associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials.


Subject(s)
Coronavirus Infections , Creatine Kinase, MB Form/blood , Heart Diseases , Natriuretic Peptide, Brain/blood , Pandemics , Peptide Fragments/blood , Pneumonia, Viral , Troponin I/blood , Betacoronavirus/isolation & purification , Biomarkers/blood , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Heart Diseases/blood , Heart Diseases/mortality , Heart Diseases/virology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Mortality , Outcome Assessment, Health Care , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Predictive Value of Tests , Prognosis , Retrospective Studies , SARS-CoV-2
16.
Heart Lung Circ ; 30(6): 848-853, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-959785

ABSTRACT

BACKGROUND: Prior studies demonstrated that elevated troponin in patients with COVID-19 was associated with increased in-hospital mortality. However, the association of cardiac injury and electrocardiogram (ECG) changes remains unclear. The aim of this study was to investigate the association of cardiac injury with ECG abnormality and with in-hospital mortality. METHODS: We conducted a retrospective cohort study of patients who were hospitalised with COVID-19 between 13 March and 31 March 2020. Those patients with troponin I measurement were included in the study and divided into those who had elevated troponin I (cardiac injury group) and those who did not (no cardiac injury group). Statistical analyses were performed to compare differences between the groups, and a multivariate logistic regression model was constructed to assess the effect of cardiac injury on in-hospital mortality. RESULTS: One hundred and eight-one (181) patients were included, 54 of whom were in the cardiac injury group and 127 in the no cardiac injury group. The mean age was 64.0±16.6 years and 55.8% were male. The cardiac injury group was more likely to be older, have a history of coronary artery disease, atrial fibrillation and congestive heart failure compared to the no cardiac injury group (all p<0.05); there was no difference in presence of chest pain (cardiac injury group versus no cardiac injury group: 17.0% versus 22.5%, p=0.92); the cardiac injury group had a significantly higher value of brain natriuretic peptide, procalcitonin, interleukin-6 and D-dimer (all p<0.05); they had numerically more frequent ECG abnormalities such as T wave inversion (13.2% versus 7.5%, p=0.23) and ST depression (1.9% versus 0.0%, p=0.13) although statistically not significant; they had significantly higher in-hospital mortality (42.3% versus 12.6%, p<0.001). With a multivariate logistic regression model, age (odds ratio [95% confidence interval]: 1.033 [1.002-1.065], p=0.034) and cardiac injury (3.25 [1.40-7.54], p=0.006) were independent predictors of in-hospital mortality. CONCLUSIONS: Patients with COVID-19 with elevated troponin I had a relatively low proportion of chest pain and ECG abnormality. Cardiac injury was independently associated with in-hospital mortality.


Subject(s)
Atrial Fibrillation , COVID-19 , Chest Pain , Electrocardiography/methods , Heart Diseases , Troponin I/blood , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Chest Pain/diagnosis , Chest Pain/etiology , Female , Heart Diseases/blood , Heart Diseases/diagnosis , Heart Diseases/virology , Hospital Mortality , Humans , Male , Middle Aged , New York City/epidemiology , Retrospective Studies , SARS-CoV-2/isolation & purification
17.
Chest ; 159(5): 1974-1985, 2021 05.
Article in English | MEDLINE | ID: covidwho-950087

ABSTRACT

BACKGROUND: Cardiac injury has been reported in up to 30% of coronavirus disease 2019 (COVID-19) patients. However, cardiac injury is defined mainly by troponin elevation without description of associated structural abnormalities and its time course has not been studied. RESEARCH QUESTION: What are the ECG and echocardiographic abnormalities as well as their time course in critically ill COVID-19 patients? STUDY DESIGN AND METHODS: The cardiac function of 43 consecutive COVID-19 patients admitted to two ICUs was assessed prospectively and repeatedly, combining ECG, cardiac biomarker, and transthoracic echocardiographic analyses from ICU admission to ICU discharge or death or to a maximum follow-up of 14 days. Cardiac injury was defined by troponin elevation and newly diagnosed ECG or echocardiographic abnormalities, or both. RESULTS: At baseline, 49% of patients demonstrated a cardiac injury, and 70% of patients experienced cardiac injury within the first 14 days of ICU stay, with a median time of occurrence of 3 days (range, 0-7 days). The most frequent abnormalities were ECG or echocardiographic signs, or both, of left ventricular (LV) abnormalities (87% of patients with cardiac injury), right ventricular (RV) systolic dysfunction (47%), pericardial effusion (43%), new-onset atrial arrhythmias (33%), LV relaxation impairment (33%), and LV systolic dysfunction (13%). Between baseline and day 14, the incidence of pericardial effusion and of new-onset atrial arrhythmias increased and the incidence of ECG or echocardiographic signs, or both, of LV abnormalities as well as the incidence of LV relaxation impairment remained stable, whereas the incidence of RV and LV systolic dysfunction decreased. INTERPRETATION: Cardiac injury is common and early in critically ill COVID-19 patients. ECG or echocardiographic signs, or both, of LV abnormalities were the most frequent abnormalities, and patients with cardiac injury experienced more RV than LV systolic dysfunction.


Subject(s)
COVID-19 , Echocardiography/methods , Electrocardiography/methods , Heart Diseases , Troponin/blood , Ventricular Dysfunction, Left , Biomarkers/blood , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Female , France/epidemiology , Heart Diseases/blood , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Heart Diseases/etiology , Humans , Incidence , Intensive Care Units/statistics & numerical data , Male , Middle Aged , SARS-CoV-2 , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
18.
Am J Med ; 134(4): 542-546, 2021 04.
Article in English | MEDLINE | ID: covidwho-917201

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) have a high prevalence of detectable troponin and myocardial injury. In addition, a subset of patients with COVID-19 has detectable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral loads. The objective of this study was to understand the relationship among SARS-CoV-2 viremia, detectable troponin, and myocardial injury in hospitalized patients with COVID-19. METHODS: SARS-CoV-2 plasma viral load was measured in plasma samples drawn from patients hospitalized for COVID-19 at 2 academic medical centers. Baseline characteristics and clinically obtained high-sensitivity cardiac troponin T (hs-cTnT) values were abstracted from the medical record. The main outcome was detectable hs-cTnT (≥6 ng/mL) and  myocardial injury (hs-cTnT ≥14 ng/mL; >99th percentile for assay). RESULTS: A total of 70 hospitalized patients with COVID-19 were included in this study, with 39% females and median age 58 ± 17 years; 21 patients (30%) were found to have detectable SARS-CoV-2 viral load and were classified in the viremia group. Patients with viremia were significantly older than those without viremia. All of the patients with viremia (100%) had detectable troponin during hospitalization compared with 59% of patients without viremia (P = 0.0003). Myocardial injury was seen in 76% of patients with viremia and 38% of those patients without viremia (P = 0.004). CONCLUSIONS: Hospitalized patients with COVID-19 with SARS-CoV-2 viremia have a significantly higher prevalence of detectable troponin and myocardial injury during their hospitalization compared with patients who did not. This first report of the relationship among SARS-CoV-2 viremia, detectable troponin, and myocardial injury in patients with COVID-19 points to additional mechanistic pathways that require deeper study to understand the complex interplay among these unique findings, cardiovascular outcomes, and mortality in COVID-19.


Subject(s)
COVID-19 , Heart Diseases , Myocardium/metabolism , SARS-CoV-2/isolation & purification , Troponin/blood , Viremia , Age Factors , COVID-19/blood , COVID-19/epidemiology , COVID-19/physiopathology , Cohort Studies , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Heart Diseases/virology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , United States/epidemiology , Viral Load/methods , Viremia/diagnosis , Viremia/epidemiology , Viremia/etiology
20.
Int J Cardiol ; 326: 237-242, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-885291

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic. The ability to predict cardiac injury and analyze lymphocyte immunity and inflammation of cardiac damage in patients with COVID-19 is limited. We aimed to determine the risk factors and predictive markers of cardiac injury in these patients. METHODS: Data from 124 consecutive hospitalized patients with confirmed COVID-19 were collected. We compared the proportion of cardiovascular disease history in moderate, severe, and critical cases. We obtained high-sensitivity cardiac troponin I (hs-cTn I) results from 68 patients. Patients were divided into two groups based on positive hs-cTn I result: those with cardiac injury (n = 19) and those without cardiac injury (n = 49). RESULTS: Compared with the group with moderate disease, hypertension, coronary heart disease, and smoking were more common in severe and critical cases. Diabetes mellitus was most common in the critical group. Age older than 65 years, presence of chronic kidney disease, and lower blood lymphocyte percentage were independent risk factors of cardiac injury. The total T- and B-lymphocyte counts and CD4+ and CD8+ T-cell counts were significantly lower in those with cardiac injury. A minimal lymphocyte percentage < 7.8% may predict cardiac injury. The interleukin (IL) 6 level in plasma was elevated in the group with cardiac injury. CONCLUSIONS: The lymphocyte percentage in blood may become a predictive marker of cardiac injury in COVID-19 patients. The total T and B cells and CD4+ and CD8+ cell counts decreased and the IL-6 level increased in COVID-19 patients with cardiac injury.


Subject(s)
COVID-19/blood , Heart Diseases/blood , Hospitalization/trends , Immunity, Cellular/physiology , Inflammation Mediators/blood , Lymphocytes/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , China/epidemiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Female , Heart Diseases/epidemiology , Heart Diseases/immunology , Humans , Inflammation Mediators/immunology , Lymphocytes/immunology , Male , Middle Aged , Predictive Value of Tests , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/immunology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL