Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Can J Cardiol ; 38(3): 338-346, 2022 03.
Article in English | MEDLINE | ID: covidwho-1654182

ABSTRACT

BACKGROUND: Strict isolation precautions limit formal echocardiography use in the setting of COVID-19 infection. Information on the importance of handheld focused ultrasound for cardiac evaluation in these patients is scarce. This study investigated the utility of a handheld echocardiography device in hospitalised patients with COVID-19 in diagnosing cardiac pathologies and predicting the composite end point of in-hospital death, mechanical ventilation, shock, and acute decompensated heart failure. METHODS: From April 28 through July 27, 2020, consecutive patients diagnosed with COVID-19 underwent evaluation with the use of handheld ultrasound (Vscan Extend with Dual Probe; GE Healthcare) within 48 hours of admission. The patients were divided into 2 groups: "normal" and "abnormal" echocardiogram, as defined by biventricular systolic dysfunction/enlargement or moderate/severe valvular regurgitation/stenosis. RESULTS: Among 102 patients, 26 (25.5%) had abnormal echocardiograms. They were older with more comorbidities and more severe presenting symptoms compared with the group with normal echocardiograms. The prevalences of the composite outcome among low- and high-risk patients (oxygen saturation < 94%) were 3.1% and 27.1%, respectively. Multivariate logistic regression analysis revealed that an abnormal echocardiogram at presentation was independently associated with the composite end point (odds ratio 6.19, 95% confidence interval 1.50-25.57; P = 0.012). CONCLUSIONS: An abnormal echocardiogram in COVID-19 infection settings is associated with a higher burden of medical comorbidities and independently predicts major adverse end points. Handheld focused echocardiography can be used as an important "rule-out" tool among high-risk patients with COVID-19 and should be integrated into their routine admission evaluation. However, its routine use among low-risk patients is not recommended.


Subject(s)
COVID-19/complications , Echocardiography/instrumentation , Heart Diseases/diagnostic imaging , Lung Diseases/diagnostic imaging , Ultrasonography/instrumentation , Aged , Echocardiography/standards , Female , Heart Diseases/etiology , Hospitalization , Humans , Lung Diseases/etiology , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Ultrasonography/standards
4.
Card Electrophysiol Clin ; 14(1): 79-93, 2022 03.
Article in English | MEDLINE | ID: covidwho-1487630

ABSTRACT

Other than respiratory disease, patients with coronavirus disease 2019 (COVID-19) commonly have cardiovascular manifestations, which are recognized as significant risk factors for increased mortality. COVID-19 patients may present with a wide spectrum of clinical presentations ranging from asymptomatic heart disease detected incidentally by cardiac investigations (troponin, BNP, and imaging) to cardiogenic shock and sudden cardiac death. In this broad clinical course, advanced imaging plays an important role in the diagnosis of different patterns of myocardial injury, risk stratification of COVID-19 patients, and in detecting potential cardiac side effects of the current treatments and vaccines against the severe acute respiratory syndrome.


Subject(s)
COVID-19 , Heart Diseases , COVID-19/complications , Heart , Heart Diseases/diagnostic imaging , Heart Diseases/virology , Humans , SARS-CoV-2 , Troponin
6.
Curr Cardiol Rep ; 23(12): 178, 2021 10 16.
Article in English | MEDLINE | ID: covidwho-1469769

ABSTRACT

PURPOSE OF REVIEW: Poor cardiovascular outcomes are linked to COVID-19 in patients with or without prior cardiovascular disease or risk factors. Echocardiography, as a portable, versatile, and comprehensive imaging technique, has been on the frontlines. Yet sonographers and physician imagers are at increased risk of contracting or transmitting COVID-19. RECENT FINDINGS: Recent scientific statements incorporate triaging approaches to identify the appropriateness of imaging exam indications, coupled with triaging of indications. Additionally, focused protocols, procedures to reduce exposure, and point-of-care ultrasound play significant roles. Lessons learned during COVID-19 will apply to future pandemics. Echocardiography is a key diagnostic modality during pandemics in patients with or without prior cardiac diseases and risk factors. Attention to clinical questions, focused protocols, novel procedures, and future developments in imaging will contribute to safe and effective practice of echocardiography.


Subject(s)
COVID-19 , Heart Diseases , Echocardiography , Heart Diseases/diagnostic imaging , Humans , SARS-CoV-2 , Ultrasonography
8.
Sci Rep ; 11(1): 19450, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447321

ABSTRACT

Recent reports linked acute COVID-19 infection in hospitalized patients to cardiac abnormalities. Studies have not evaluated presence of abnormal cardiac structure and function before scanning in setting of COVD-19 infection. We sought to examine cardiac abnormalities in consecutive group of patients with acute COVID-19 infection according to the presence or absence of cardiac disease based on review of health records and cardiovascular imaging studies. We looked at independent contribution of imaging findings to clinical outcomes. After excluding patients with previous left ventricular (LV) systolic dysfunction (global and/or segmental), 724 patients were included. Machine learning identified predictors of in-hospital mortality and in-hospital mortality + ECMO. In patients without previous cardiovascular disease, LV EF < 50% occurred in 3.4%, abnormal LV global longitudinal strain (< 16%) in 24%, and diastolic dysfunction in 20%. Right ventricular systolic dysfunction (RV free wall strain < 20%) was noted in 18%. Moderate and large pericardial effusion were uncommon with an incidence of 0.4% for each category. Forty patients received ECMO support, and 79 died (10.9%). A stepwise increase in AUC was observed with addition of vital signs and laboratory measurements to baseline clinical characteristics, and a further significant increase (AUC 0.91) was observed when echocardiographic measurements were added. The performance of an optimized prediction model was similar to the model including baseline characteristics + vital signs and laboratory results + echocardiographic measurements.


Subject(s)
COVID-19/complications , Heart Diseases/etiology , Heart Diseases/mortality , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Clinical Decision Rules , Echocardiography , Extracorporeal Membrane Oxygenation , Female , Heart Diseases/diagnostic imaging , Hospital Mortality/trends , Humans , Machine Learning , Male , Middle Aged , Models, Theoretical , Prognosis , ROC Curve , Retrospective Studies , Young Adult
9.
Radiologe ; 61(10): 896-901, 2021 Oct.
Article in German | MEDLINE | ID: covidwho-1411798

ABSTRACT

BACKGROUND: Infections with coronavirus disease 2019 (COVID-19) most frequently affect the lungs but may also result in cardiovascular involvement and cardiovascular complications. The heart can either be involved as part of a systemic infection or directly involved due to myocarditis or pericarditis as well as in hypoxia, volume overload, fever or thromboembolic complications. Moreover, pre-existing underlying cardiovascular diseases have a substantial influence on the prognosis of patients with COVID-19 infections. METHOD: This review article is based on a comprehensive literature search in the PubMed database on cardiac involvement and cardiac complications of COVID 19 infections, enriched by experiences in dealing with this disorder. RESULTS AND CONCLUSION: Depending on the severity of the infection, cardiac involvement in a COVID 19 infection is observed in up to 50% of the patients. Besides echocardiography as the first-line examination method, cardiac magnetic resonance imaging (MRI) for assessment of the myocardial structure and cardiac computed tomography (CT) for assessment of coronary arteries and to rule out intracardiac thrombus formation represent important imaging modalities. The most important cardiac manifestations in COVID 19 infections are ischemic and inflammatory diseases. The imaging diagnostics play an important role in the acute as well as in the postinfectious phases.


Subject(s)
COVID-19 , Heart Diseases , Myocarditis , Heart Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , SARS-CoV-2
12.
Am Heart J ; 242: 61-70, 2021 12.
Article in English | MEDLINE | ID: covidwho-1356105

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) may cause myocardial injury and myocarditis, and reports of persistent cardiac pathology after COVID-19 have raised concerns of long-term cardiac consequences. We aimed to assess the presence of abnormal cardiovascular resonance imaging (CMR) findings in patients recovered from moderate-to-severe COVID-19, and its association with markers of disease severity in the acute phase. METHODS: Fifty-eight (49%) survivors from the prospective COVID MECH study, underwent CMR median 175 [IQR 105-217] days after COVID-19 hospitalization. Abnormal CMR was defined as left ventricular ejection fraction (LVEF) <50% or myocardial scar by late gadolinium enhancement. CMR indices were compared to healthy controls (n = 32), and to circulating biomarkers measured during the index hospitalization. RESULTS: Abnormal CMR was present in 12 (21%) patients, of whom 3 were classified with major pathology (scar and LVEF <50% or LVEF <40%). There was no difference in the need of mechanical ventilation, length of hospital stay, and vital signs between patients with vs without abnormal CMR after 6 months. Severe acute respiratory syndrome coronavirus 2 viremia and concentrations of inflammatory biomarkers during the index hospitalization were not associated with persistent CMR pathology. Cardiac troponin T and N-terminal pro-B-type natriuretic peptide concentrations on admission, were higher in patients with CMR pathology, but these associations were not significant after adjusting for demographics and established cardiovascular disease. CONCLUSIONS: CMR pathology 6 months after moderate-to-severe COVID-19 was present in 21% of patients and did not correlate with severity of the disease. Cardiovascular biomarkers during COVID-19 were higher in patients with CMR pathology, but with no significant association after adjusting for confounders. TRIAL REGISTRATION: COVID MECH Study ClinicalTrials.gov Identifier: NCT04314232.


Subject(s)
COVID-19/complications , Cicatrix/diagnostic imaging , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Left/diagnostic imaging , Adult , Aged , Biomarkers/blood , COVID-19/blood , Cicatrix/etiology , Female , Gadolinium , Heart Diseases/blood , Heart Diseases/etiology , Heart Diseases/physiopathology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , Severity of Illness Index , Stroke Volume , Survivors , Troponin T/blood , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
13.
Open Heart ; 8(2)2021 08.
Article in English | MEDLINE | ID: covidwho-1351110

ABSTRACT

OBJECTIVES: To describe the use of echocardiography in patients hospitalised with suspected coronavirus infection and to assess its impact on clinical management. METHODS: We studied 79 adults from a prospective registry of inpatients with suspected coronavirus infection at a single academic centre. Echocardiographic indications included abnormal biomarkers, shock, cardiac symptoms, arrhythmia, worsening hypoxaemia or clinical deterioration. Study type (limited or complete) was assessed for each patient. The primary outcome measure was echocardiography-related change in clinical management, defined as intensive care transfer, medication changes, altered ventilation parameters or subsequent cardiac procedures within 24 hours of echocardiography. Coronavirus-positive versus coronavirus-negative patient groups were compared. The relationship between echocardiographic findings and coronavirus mortality was assessed. RESULTS: 56 patients were coronavirus-positive and 23 patients were coronavirus-negative with symptoms attributed to other diagnoses. Coronavirus-positive patients more often received limited echocardiograms (70% vs 26%, p=0.001). The echocardiographic indication for coronavirus-infected patients was frequently worsening hypoxaemia (43% vs 4%) versus chest pain, syncope or clinical heart failure (23% vs 44%). Echocardiography changed management less frequently in coronavirus-positive patients (18% vs 48%, p=0.01). Among coronavirus-positive patients, 14 of 56 (25.0%) died during hospitalisation. Those who died more often had echocardiography to evaluate clinical deterioration (71% vs 24%) and had elevated right ventricular systolic pressures (37 mm Hg vs 25 mm Hg), but other parameters were similar to survivors. CONCLUSIONS: Echocardiograms performed on hospitalised patients with coronavirus infection were often technically limited, and their findings altered patient management in a minority of patients.


Subject(s)
COVID-19/diagnostic imaging , Echocardiography, Doppler , Heart Diseases/diagnostic imaging , Heart/diagnostic imaging , Aged , Aged, 80 and over , COVID-19/physiopathology , COVID-19/therapy , COVID-19/virology , Clinical Decision-Making , Female , Heart/physiopathology , Heart/virology , Heart Diseases/physiopathology , Heart Diseases/therapy , Heart Diseases/virology , Hospitalization , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies
14.
J Am Heart Assoc ; 10(16): e021428, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1348207

ABSTRACT

Background Cardiac dysfunction is a prominent feature of multisystem inflammatory syndrome in children (MIS-C), yet the etiology is poorly understood. We determined whether dysfunction is global or regional, and whether it is associated with the cytokine milieu, microangiopathy, or severity of shock. Methods and Results We analyzed echocardiographic parameters of myocardial deformation and compared global and segmental left ventricular strain between 43 cases with MIS-C ≤18 years old and 40 controls. Primary outcomes included left ventricular global longitudinal strain, right ventricular free wall strain), and left atrial strain. We evaluated relationships between strain and profiles of 10 proinflammatory cytokines, microangiopathic features (soluble C5b9), and vasoactive-inotropic requirements. Compared with controls, cases with MIS-C had significant impairments in all parameters of systolic and diastolic function. 65% of cases with MIS-C had abnormal left ventricular function (|global longitudinal strain|<17%), although elevations of cytokines were modest. All left ventricular segments were involved, without apical or basal dominance to suggest acute stress cardiomyopathy. Worse global longitudinal strain correlated with higher ratios of interleukin-6 (ρ -0.43) and interleukin-8 (ρ -0.43) to total hypercytokinemia, but not absolute levels of interleukin-6 or interleukin-8, or total hypercytokinemia. Similarly, worse right ventricular free wall strain correlated with higher relative interleukin-8 expression (ρ -0.59). There were no significant associations between function and microangiopathy or vasoactive-inotropic requirements. Conclusions Myocardial function is globally decreased in MIS-C and not explained by acute stress cardiomyopathy. Cardiac dysfunction may be driven by the relative skew of the immune response toward interleukin-6 and interleukin-8 pathways, more so than degree of hyperinflammation, refining the current paradigm of myocardial involvement in MIS-C.


Subject(s)
Atrial Function, Left , COVID-19/complications , Cytokine Release Syndrome/etiology , Cytokines/blood , Heart Diseases/etiology , Inflammation Mediators/blood , Systemic Inflammatory Response Syndrome/complications , Ventricular Function, Left , Ventricular Function, Right , Adolescent , Age Factors , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , Child , Cross-Sectional Studies , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Echocardiography , Female , Heart Diseases/diagnostic imaging , Heart Diseases/immunology , Heart Diseases/physiopathology , Humans , Male , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/immunology
15.
Open Heart ; 8(2)2021 08.
Article in English | MEDLINE | ID: covidwho-1346091

ABSTRACT

OBJECTIVES: We aimed to explore the impact of the COVID-19 pandemic on cardiac diagnostic testing and practice and to assess its impact in different regions in Europe. METHODS: The online survey organised by the International Atomic Energy Agency Division of Human Health collected information on changes in cardiac imaging procedural volumes between March 2019 and March/April 2020. Data were collected from 909 centres in 108 countries. RESULTS: Centres in Northern and Southern Europe were more likely to cancel all outpatient activities compared with Western and Eastern Europe. There was a greater reduction in total procedure volumes in Europe compared with the rest of the world in March 2020 (45% vs 41%, p=0.003), with a more marked reduction in Southern Europe (58%), but by April 2020 this was similar in Europe and the rest of the world (69% vs 63%, p=0.261). Regional variations were apparent between imaging modalities, but the largest reductions were in Southern Europe for nearly all modalities. In March 2020, location in Southern Europe was the only independent predictor of the reduction in procedure volume. However, in April 2020, lower gross domestic product and higher COVID-19 deaths were the only independent predictors. CONCLUSION: The first wave of the COVID-19 pandemic had a significant impact on care of patients with cardiac disease, with substantial regional variations in Europe. This has potential long-term implications for patients and plans are required to enable the diagnosis of non-COVID-19 conditions during the ongoing pandemic.


Subject(s)
COVID-19 , Cardiac Imaging Techniques/trends , Cardiologists/trends , Healthcare Disparities/trends , Heart Diseases/diagnostic imaging , Practice Patterns, Physicians'/trends , Europe , Health Care Surveys , Humans , Predictive Value of Tests
17.
J Card Surg ; 36(10): 3939-3943, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1325034

ABSTRACT

Inflammation and thrombogenic effects of coronavirus disease 2019 (COVID-19) can lead to cardiovascular complications in patients even after recovery from COVID-19. Intracardiac thrombus is life-threatening and can cause sudden death. Our study describes two patients who recovered from COVID-19 and presented with chronic intracardiac thrombus.


Subject(s)
COVID-19 , Heart Diseases , Thrombosis , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Humans , SARS-CoV-2 , Thrombosis/diagnostic imaging , Thrombosis/etiology
18.
Med Intensiva (Engl Ed) ; 44(9): 551-565, 2020 Dec.
Article in Spanish | MEDLINE | ID: covidwho-1243085

ABSTRACT

The clinical picture of SARS-CoV-2 infection (COVID-19) is characterized in its more severe form, by an acute respiratory failure which can worsen to pneumonia and acute respiratory distress syndrome (ARDS) and get complicated with thrombotic events and heart dysfunction. Therefore, admission to the Intensive Care Unit (ICU) is common. Ultrasound, which has become an everyday tool in the ICU, can be very useful during COVID-19 pandemic, since it provides the clinician with information which can be interpreted and integrated within a global assessment during the physical examination. A description of some of the potential applications of ultrasound is depicted in this document, in order to supply the physicians taking care of these patients with an adapted guide to the intensive care setting. Some of its applications since ICU admission include verification of the correct position of the endotracheal tube, contribution to safe cannulation of lines, and identification of complications and thrombotic events. Furthermore, pleural and lung ultrasound can be an alternative diagnostic test to assess the degree of involvement of the lung parenchyma by means of the evaluation of specific ultrasound patterns, identification of pleural effusions and barotrauma. Echocardiography provides information of heart involvement, detects cor pulmonale and shock states.


Subject(s)
COVID-19/diagnostic imaging , SARS-CoV-2 , Ultrasonography, Interventional/methods , Blood Vessels/diagnostic imaging , COVID-19/complications , Critical Care , Critical Illness , Echocardiography , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Heart Ventricles/diagnostic imaging , Humans , Hypertension, Pulmonary/diagnostic imaging , Intensive Care Units , Intubation, Intratracheal/methods , Lung/diagnostic imaging , Organ Size , Pleura/diagnostic imaging , Pleural Effusion/diagnostic imaging , Pneumothorax/diagnostic imaging , Pulmonary Heart Disease/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Shock/diagnostic imaging , Transducers
19.
J Cardiovasc Pharmacol Ther ; 26(5): 399-414, 2021 09.
Article in English | MEDLINE | ID: covidwho-1216874

ABSTRACT

In the era of the coronavirus disease 2019 (COVID-19) pandemic, acute cardiac injury (ACI), as reflected by elevated cardiac troponin above the 99th percentile, has been observed in 8%-62% of patients with COVID-19 infection with highest incidence and mortality recorded in patients with severe infection. Apart from the clinically and electrocardiographically discernible causes of ACI, such as acute myocardial infarction (MI), other cardiac causes need to be considered such as myocarditis, Takotsubo syndrome, and direct injury from COVID-19, together with noncardiac conditions, such as pulmonary embolism, critical illness, and sepsis. Acute coronary syndromes (ACS) with normal or near-normal coronary arteries (ACS-NNOCA) appear to have a higher prevalence in both COVID-19 positive and negative patients in the pandemic compared to the pre-pandemic era. Echocardiography, coronary angiography, chest computed tomography and/or cardiac magnetic resonance imaging may render a correct diagnosis, obviating the need for endomyocardial biopsy. Importantly, a significant delay has been recorded in patients with ACS seeking advice for their symptoms, while their routine care has been sharply disrupted with fewer urgent coronary angiographies and/or primary percutaneous coronary interventions performed in the case of ST-elevation MI (STEMI) with an inappropriate shift toward thrombolysis, all contributing to a higher complication rate in these patients. Thus, new challenges have emerged in rendering a diagnosis and delivering treatment in patients with ACI/ACS in the pandemic era. These issues, the various mechanisms involved in the development of ACI/ACS, and relevant current guidelines are herein reviewed.


Subject(s)
Acute Coronary Syndrome/epidemiology , COVID-19/epidemiology , Myocardial Infarction/epidemiology , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/mortality , Age Factors , COVID-19/mortality , Cardiac Imaging Techniques , Diagnosis, Differential , Heart Diseases/diagnostic imaging , Heart Diseases/epidemiology , Humans , Inflammation Mediators/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/mortality , SARS-CoV-2 , Sex Factors , Stress, Psychological/epidemiology , Time-to-Treatment , Troponin I/blood
20.
Radiology ; 299(2): E230-E240, 2021 05.
Article in English | MEDLINE | ID: covidwho-1203991

ABSTRACT

Background It is unknown if there are cardiac abnormalities in persons who have recovered from coronavirus disease 2019 (COVID-19) without cardiac symptoms or in those who have normal biomarkers and normal electrocardiograms. Purpose To evaluate cardiac involvement in participants who had recovered from COVID-19 without clinical evidence of cardiac involvement by using cardiac MRI. Materials and Methods This prospective observational cohort study included 40 participants who had recovered from COVID-19 with moderate (n = 24) or severe (n = 16) pneumonia and who had no cardiovascular medical history, were without cardiac symptoms, had normal electrocardiograms, had normal serologic cardiac enzyme levels, and had been discharged for more than 90 days between May and September 2020. Demographic characteristics were recorded, serum cardiac enzyme levels were measured, and cardiac MRI was performed. Cardiac function, native T1, extracellular volume fraction (ECV), and two-dimensional (2D) strain were quantitatively evaluated and compared with values in control subjects (n = 25). Comparisons among the three groups were performed by using one-way analysis of variance with Bonferroni-corrected post hoc comparisons (for normal distribution) or Kruskal-Wallis tests with post hoc pairwise comparisons (for nonnormal distribution). Results Forty participants (mean age, 54 years ± 12 [standard deviation]; 24 men) were enrolled; participants had a mean time between admission and cardiac MRI of 158 days ± 18 and between discharge and cardiac MRI examination of 124 days ± 17. There were no left or right ventricular size or functional differences between participants who had recovered from COVID-19 and healthy control subjects. Only one (3%) participant had positive late gadolinium enhancement located at the mid inferior wall. Global ECV values were elevated in participants who had recovered from COVID-19 with moderate or severe pneumonia compared with those in healthy control subjects (median ECV, 29.7% vs 31.4% vs 25.0%, respectively; interquartile range, 28.0%-32.9% vs 29.3%-34.0% vs 23.7%-26.0%, respectively; P < .001 for both). The 2D global left ventricular longitudinal strain was reduced in both groups of participants (moderate COVID-19 group, -12.5% [interquartile range, -15.5% to -10.7%]; severe COVID-19 group, -12.5% [interquartile range, -15.4% to -8.7%]) compared with the healthy control group (-15.4% [interquartile range, -17.6% to -14.6%]) (P = .002 and P = .001, respectively). Conclusion Cardiac MRI myocardial tissue and strain imaging parameters suggest that a proportion of participants who had recovered from COVID-19 had subclinical myocardial abnormalities detectable months after recovery. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Heart Diseases/etiology , Heart Diseases/physiopathology , Magnetic Resonance Imaging/methods , SARS-CoV-2 , China , Cohort Studies , Female , Heart/diagnostic imaging , Heart/physiopathology , Heart Diseases/diagnostic imaging , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL