Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
PLoS One ; 16(11): e0257549, 2021.
Article in English | MEDLINE | ID: covidwho-1793615

ABSTRACT

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Subject(s)
Air Conditioning/methods , COVID-19/prevention & control , Exercise/physiology , Particulate Matter/chemistry , Adult , Aerosols/chemistry , Air Filters , Anaerobic Threshold/physiology , COVID-19/metabolism , Exercise Test/methods , Exhalation/physiology , Female , Heart Rate/physiology , Humans , Japan , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Respiration , Respiratory System/physiopathology , Running/physiology , SARS-CoV-2/pathogenicity , Ventilation/methods
2.
J Pediatr ; 242: 137-144.e4, 2022 03.
Article in English | MEDLINE | ID: covidwho-1751121

ABSTRACT

OBJECTIVE: We hypothesized that a cumulative heart rate characteristics (HRC) index in real-time throughout the neonatal intensive care unit (NICU) hospitalization, alone or combined with birth demographics and clinical characteristics, can predict a composite outcome of death or neurodevelopmental impairment (NDI). STUDY DESIGN: We performed a retrospective analysis using data from extremely low birth weight infants who were monitored for HRC during neonatal intensive care. Surviving infants were assessed for NDI at 18-22 months of age. Multivariable predictive modeling of subsequent death or NDI using logistic regression, cross-validation with repeats, and step-wise feature elimination was performed each postnatal day through day 60. RESULTS: Among the 598 study participants, infants with the composite outcome of death or moderate-to-severe NDI had higher mean HRC scores during their stay in the NICU (3.1 ± 1.8 vs 1.3 ± 0.8; P < .001). Predictive models for subsequent death or NDI were consistently higher when the cumulative mean HRC score was included as a predictor variable. A parsimonious model including birth weight, sex, ventilatory status, and cumulative mean HRC score had a cross-validated receiver-operator characteristic curve as high as 0.84 on days 4, 5, 6, and 8 and as low as 0.78 on days 50-52 and 56-58 to predict subsequent death or NDI. CONCLUSIONS: In extremely low birth weight infants, higher mean HRC scores throughout their stay in the NICU were associated with a higher risk of the composite outcome of death or NDI. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00307333.


Subject(s)
Infant, Extremely Low Birth Weight , Intensive Care Units, Neonatal , Birth Weight , Heart Rate/physiology , Humans , Infant , Infant, Newborn , Retrospective Studies
3.
Sensors (Basel) ; 22(5)2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1732178

ABSTRACT

Remote monitoring platforms based on advanced health sensors have the potential to become important tools during the COVID-19 pandemic, supporting the reduction in risks for affected populations such as the elderly. Current commercially available wearable devices still have limitations to deal with heart rate variability (HRV), an important health indicator of human aging. This study analyzes the role of a remote monitoring system designed to support health services to older people during the complete course of the COVID-19 pandemic in Brazil, since its beginning in Brazil in March 2020 until November 2021, based on HRV. Using different levels of analysis and data, we validated HRV parameters by comparing them with reference sensors and tools in HRV measurements. We compared the results obtained for the cardiac modulation data in time domain using samples of 10 elderly people's HRV data from Fitbit Inspire HR with the results provided by Kubios for the same population using a cardiac belt, with the data divided into train and test, where 75% of the data were used for training the models, with the remaining 25% as a test set for evaluating the final performance of the models. The results show that there is very little difference between the results obtained by the remote monitoring system compared with Kubios, indicating that the data obtained from these devices might provide accurate results in evaluating HRV in comparison with gold standard devices. We conclude that the application of the methods and techniques used and reported in this study are useful for the creation and validation of HRV indicators in time series obtained by means of wearable devices based on photoplethysmography sensors; therefore, they can be incorporated into remote monitoring processes as seen during the pandemic.


Subject(s)
COVID-19 , Wearable Electronic Devices , Aged , Aged, 80 and over , COVID-19/diagnosis , Heart Rate/physiology , Humans , Pandemics , SARS-CoV-2
4.
Int J Environ Res Public Health ; 19(4)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1706609

ABSTRACT

The harmful effects of coronavirus disease 2019 (COVID-19) can reach the autonomic nervous system (ANS) and endothelial function. Therefore, the detrimental multiorgan effects of COVID-19 could be induced by deregulations in ANS that may persist after the acute SARS-CoV-2 infection. Additionally, investigating the differences in ANS response in overweight/obese, and physically inactive participants who had COVID-19 compared to those who did not have the disease is necessary. The aim of the study was to analyze the autonomic function of young adults after mild-to-moderate infection with SARS-CoV-2 and to assess whether body mass index (BMI) and levels of physical activity modulates autonomic function in participants with and without COVID-19. Patients previously infected with SARS-CoV-2 and healthy controls were recruited for this cross-sectional observational study. A general anamnesis was taken, and BMI and physical activity levels were assessed. The ANS was evaluated through heart rate variability. A total of 57 subjects were evaluated. Sympathetic nervous system activity in the post-COVID-19 group was increased (stress index; p = 0.0273). They also presented lower values of parasympathetic activity (p < 0.05). Overweight/obese subjects in the post-COVID-19 group presented significantly lower parasympathetic activity and reduced global variability compared to non-obese in control group (p < 0.05). Physically inactive subjects in the post-COVID-19 group presented significantly higher sympathetic activity than active subjects in the control group. Parasympathetic activity was significantly increased in physically active subjects in the control group compared to the physically inactive post-COVID-19 group (p < 0.05). COVID-19 promotes changes in the ANS of young adults, and these changes are modulated by overweight/obesity and physical activity levels.


Subject(s)
COVID-19 , Autonomic Nervous System/physiology , COVID-19/epidemiology , Cross-Sectional Studies , Exercise/physiology , Heart Rate/physiology , Humans , SARS-CoV-2 , Young Adult
6.
Ann Neurol ; 91(3): 367-379, 2022 03.
Article in English | MEDLINE | ID: covidwho-1636023

ABSTRACT

OBJECTIVE: The purpose of this study was to describe cerebrovascular, neuropathic, and autonomic features of post-acute sequelae of coronavirus disease 2019 ((COVID-19) PASC). METHODS: This retrospective study evaluated consecutive patients with chronic fatigue, brain fog, and orthostatic intolerance consistent with PASC. Controls included patients with postural tachycardia syndrome (POTS) and healthy participants. Analyzed data included surveys and autonomic (Valsalva maneuver, deep breathing, sudomotor, and tilt tests), cerebrovascular (cerebral blood flow velocity [CBFv] monitoring in middle cerebral artery), respiratory (capnography monitoring), and neuropathic (skin biopsies for assessment of small fiber neuropathy) testing and inflammatory/autoimmune markers. RESULTS: Nine patients with PASC were evaluated 0.8 ± 0.3 years after a mild COVID-19 infection, and were treated as home observations. Autonomic, pain, brain fog, fatigue, and dyspnea surveys were abnormal in PASC and POTS (n = 10), compared with controls (n = 15). Tilt table test reproduced the majority of PASC symptoms. Orthostatic CBFv declined in PASC (-20.0 ± 13.4%) and POTS (-20.3 ± 15.1%), compared with controls (-3.0 ± 7.5%, p = 0.001) and was independent of end-tidal carbon dioxide in PASC, but caused by hyperventilation in POTS. Reduced orthostatic CBFv in PASC included both subjects without (n = 6) and with (n = 3) orthostatic tachycardia. Dysautonomia was frequent (100% in both PASC and POTS) but was milder in PASC (p = 0.002). PASC and POTS cohorts diverged in frequency of small fiber neuropathy (89% vs 60%) but not in inflammatory markers (67% vs 70%). Supine and orthostatic hypocapnia was observed in PASC. INTERPRETATION: PASC following mild COVID-19 infection is associated with multisystem involvement including: (1) cerebrovascular dysregulation with persistent cerebral arteriolar vasoconstriction; (2) small fiber neuropathy and related dysautonomia; (3) respiratory dysregulation; and (4) chronic inflammation. ANN NEUROL 2022;91:367-379.


Subject(s)
Blood Pressure/physiology , COVID-19/complications , Cerebrovascular Circulation/physiology , Heart Rate/physiology , Inflammation Mediators/blood , Adult , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Fatigue/blood , Fatigue/diagnosis , Fatigue/physiopathology , Female , Humans , Male , Middle Aged , Orthostatic Intolerance/blood , Orthostatic Intolerance/diagnosis , Orthostatic Intolerance/physiopathology , Retrospective Studies
7.
Respir Physiol Neurobiol ; 298: 103844, 2022 04.
Article in English | MEDLINE | ID: covidwho-1620996

ABSTRACT

BACKGROUND: Use of high positive end-expiratory pressure (PEEP) and prone positioning is common in patients with COVID-19-induced acute respiratory failure. Few data clarify the hemodynamic effects of these interventions in this specific condition. We performed a physiologic study to assess the hemodynamic effects of PEEP and prone position during COVID-19 respiratory failure. METHODS: Nine adult patients mechanically ventilated due to COVID-19 infection and fulfilling moderate-to-severe ARDS criteria were studied. Respiratory mechanics, gas exchange, cardiac output, oxygen consumption, systemic and pulmonary pressures were recorded through pulmonary arterial catheterization at PEEP of 15 and 5 cmH2O, and after prone positioning. Recruitability was assessed through the recruitment-to-inflation ratio. RESULTS: High PEEP improved PaO2/FiO2 ratio in all patients (p = 0.004), and significantly decreased pulmonary shunt fraction (p = 0.012), regardless of lung recruitability. PEEP-induced increases in PaO2/FiO2 changes were strictly correlated with shunt fraction reduction (rho=-0.82, p = 0.01). From low to high PEEP, cardiac output decreased by 18 % (p = 0.05) and central venous pressure increased by 17 % (p = 0.015). As compared to supine position with low PEEP, prone positioning significantly decreased pulmonary shunt fraction (p = 0.03), increased PaO2/FiO2 (p = 0.03) and mixed venous oxygen saturation (p = 0.016), without affecting cardiac output. PaO2/FiO2 was improved by prone position also when compared to high PEEP (p = 0.03). CONCLUSIONS: In patients with moderate-to-severe ARDS due to COVID-19, PEEP and prone position improve arterial oxygenation. Changes in cardiac output contribute to the effects of PEEP but not of prone position, which appears the most effective intervention to improve oxygenation with no hemodynamic side effects.


Subject(s)
Blood Pressure/physiology , COVID-19/physiopathology , COVID-19/therapy , Heart Rate/physiology , Outcome and Process Assessment, Health Care , Oxygen Consumption/physiology , Positive-Pressure Respiration , Prone Position , Vascular Resistance/physiology , Aged , Aged, 80 and over , Female , Hemodynamic Monitoring , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prone Position/physiology
8.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1574541

ABSTRACT

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/physiopathology , Heart Rate/physiology , Wearable Electronic Devices , Adult , COVID-19/virology , Circadian Rhythm/physiology , Female , Health Personnel , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
9.
Eur Rev Med Pharmacol Sci ; 25(22): 7144-7150, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1552081

ABSTRACT

OBJECTIVE: This study aimed to investigate the association between hyperglycemia and body mass index (BMI), along with other associated comorbidities in hospitalized COVID-19 patients among the Indonesian population. PATIENTS AND METHODS: This was a retrospective study conducted at Hasan Sadikin Hospital, Bandung between March 1, 2020, and August 30, 2020. Data were analyzed using the chi-square test for categorical data and unpaired t-test and Mann-Whitney alternative test for numerical data using SPSS version 24.0 (IBM SPSS Statistics for Windows, Version 24.0. IBM, Armonk, NY, USA) and GraphPad Prism version 7.0 for Windows. RESULTS: A total of 142 hospitalized COVID-19 patients were documented between March and August 2020 at the Hasan Sadikin Hospital. Among the 142 patients, 116 (81.7%) survived, while 26 (18.3%) died. Sex, age, BMI, number of comorbidities, heart rate, respiratory rate, peripheral oxygen saturation, platelet count, random blood glucose (RBG), and length of stay (LOS) were significantly associated with mortality. Multivariate analyses demonstrated that admission RBG levels > 140 mg/dl were independently associated with an increased risk of mortality in COVID-19 patients (OR 4.3, 95% CI 1.1-17.5, p = 0.043), while BMI > 25 kg/m2 was significantly associated with reduced mortality (OR, 0.22; 95% CI 0.05-0.88, p = 0.033). CONCLUSIONS: Admission hyperglycemia, indicated by an increase in RBG levels >140 mg/dL, is independently associated with an increased risk of mortality in hospitalized COVID-19 patients, while obesity (BMI >25 kg/m2) might have protective properties against the risk of death.


Subject(s)
Blood Glucose/analysis , COVID-19/mortality , Hospitalization/statistics & numerical data , Hyperglycemia/complications , Obesity/complications , Adult , Aged , Body Mass Index , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Comorbidity , Female , Heart Rate/physiology , Hospitalization/trends , Humans , Indonesia/epidemiology , Length of Stay/statistics & numerical data , Male , Middle Aged , Platelet Count , Respiratory Rate/physiology , Retrospective Studies , Risk Factors , SARS-CoV-2/genetics
10.
Nat Med ; 28(1): 175-184, 2022 01.
Article in English | MEDLINE | ID: covidwho-1541244

ABSTRACT

Early detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 participants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals. Pre-symptomatic signals were observed at a median of 3 days before symptom onset. Examination of detailed survey responses provided by the participants revealed that other respiratory infections as well as events not associated with infection, such as stress, alcohol consumption and travel, could also trigger alerts, albeit at a much lower mean frequency (1.15 alert days per person compared to 3.42 alert days per person for coronavirus disease 2019 cases). Thus, analysis of smartwatch signals by an online detection algorithm provides advance warning of SARS-CoV-2 infection in a high percentage of cases. This study shows that a real-time alerting system can be used for early detection of infection and other stressors and employed on an open-source platform that is scalable to millions of users.


Subject(s)
COVID-19/diagnosis , Carrier State/diagnosis , Exercise , Heart Rate/physiology , Wearable Electronic Devices , Accelerometry , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Carrier State/physiopathology , Early Diagnosis , Female , Fitness Trackers , Humans , Male , Middle Aged , SARS-CoV-2 , Sleep , Young Adult
11.
PLoS One ; 16(11): e0257549, 2021.
Article in English | MEDLINE | ID: covidwho-1511814

ABSTRACT

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Subject(s)
Air Conditioning/methods , COVID-19/prevention & control , Exercise/physiology , Particulate Matter/chemistry , Adult , Aerosols/chemistry , Air Filters , Anaerobic Threshold/physiology , COVID-19/metabolism , Exercise Test/methods , Exhalation/physiology , Female , Heart Rate/physiology , Humans , Japan , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Respiration , Respiratory System/physiopathology , Running/physiology , SARS-CoV-2/pathogenicity , Ventilation/methods
12.
PLoS One ; 16(10): e0258841, 2021.
Article in English | MEDLINE | ID: covidwho-1496516

ABSTRACT

BACKGROUND: Patients with COVID-19 present with a variety of clinical manifestations, ranging from mild or asymptomatic disease to severe illness and death. Whilst previous studies have clarified these and several other aspects of COVID-19, one of the ongoing challenges regarding COVID-19 is to determine which patients are at risk of adverse outcomes of COVID-19 infection. It is hypothesized that this is the result of insufficient inhibition of the immune response, with the vagus nerve being an important neuro-immuno-modulator of inflammation. Vagus nerve activity can be non-invasively indexed by heart-rate-variability (HRV). Therefore, we aimed to assess the prognostic value of HRV, as a surrogate marker for vagus nerve activity, in predicting mortality and intensive care unit (ICU) referral, in patients hospitalized with COVID-19. METHODS: A retrospective cohort study including all consecutive patients (n = 271) diagnosed and hospitalized with COVID-19 between March 2020 and May 2020, without a history of cardiac arrhythmias (including atrial and ventricular premature contractions), pacemaker, or current bradycardia (heart rate <50 bpm) or tachycardia (heart rate >110 bpm). HRV was based on one 10s ECG recorded at admission. 3-week survival and ICU referral were examined. RESULTS: HRV indexed as standard deviation of normal to normal heartbeat intervals (SDNN) predicted survival (H.R. = 0.53 95%CI: 0.31-0.92). This protective role was observed only in patients aged 70 years and older, not in younger patients. HRV below median value also predicted ICU referral within the first week of hospitalization (H.R = 0.51, 95%CI: 0.29-0.90, P = 0.021). CONCLUSION: Higher HRV predicts greater chances of survival, especially in patients aged 70 years and older with COVID-19, independent of major prognostic factors. Low HRV predicts ICU indication and admission in the first week after hospitalization.


Subject(s)
COVID-19/mortality , Heart Rate/physiology , Age Factors , Aged , Aged, 80 and over , COVID-19/metabolism , Electrocardiography, Ambulatory , Female , Heart/physiopathology , Heart Atria/physiopathology , Humans , Male , Middle Aged , Myocardium/metabolism , Prognosis , Retrospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Treatment Outcome , Vagus Nerve/physiopathology
13.
Stress ; 25(1): 9-13, 2022 01.
Article in English | MEDLINE | ID: covidwho-1488081

ABSTRACT

Resting heart rate variability (HRV), a surrogate index of cardiac vagal modulation, is considered a putative biomarker of stress resilience as it reflects the ability to effectively regulate emotions in a changing environment. However, most studies are cross-sectional, precluding longitudinal inferences. The high degree of uncertainty and fear at a global level that characterizes the COVID-19 pandemic offers a unique opportunity to explore the utility of HRV measures as longitudinal predictors of stress resilience. This study examined whether resting measures of HRV prior to the COVID-19 outbreak (i.e. nearly 2 years before; Time 0) could predict emotion regulation strategies and daily affect in healthy adults during the May 2020 lockdown (Time 1). Moreover, we evaluated the association between HRV measures, emotion regulation strategies, subjective perception of COVID-19 risk, and self-reported depressive symptoms at Time 1. Higher resting HRV at Time 0 predicted a stronger engagement in more functional emotion regulation strategies, as well as of higher daily feelings of safeness and reduced daily worry at Time 1. Moreover, depressive symptoms negatively correlated with HRV and positively correlated with the subjective perception of COVID-19 risk at Time 1. Current data support the view that HRV might not only be a marker but also a precursor of resilience under stressful times.


Subject(s)
COVID-19 , Emotional Regulation , Adult , Communicable Disease Control , Cross-Sectional Studies , Heart Rate/physiology , Humans , Pandemics , SARS-CoV-2 , Stress, Psychological
14.
PLoS One ; 16(2): e0247414, 2021.
Article in English | MEDLINE | ID: covidwho-1388900

ABSTRACT

BACKGROUND: Facemasks are recommended to reduce the spread of SARS-CoV-2, but concern about inadequate gas exchange is an often cited reason for non-compliance. RESEARCH QUESTION: Among adult volunteers, do either cloth masks or surgical masks impair oxygenation or ventilation either at rest or during physical activity? STUDY DESIGN AND METHODS: With IRB approval and informed consent, we measured heart rate (HR), transcutaneous carbon dioxide (CO2) tension and oxygen levels (SpO2) at the conclusion of six 10-minute phases: sitting quietly and walking briskly without a mask, sitting quietly and walking briskly while wearing a cloth mask, and sitting quietly and walking briskly while wearing a surgical mask. Brisk walking required at least a 10bpm increase in heart rate. Occurrences of hypoxemia (decrease in SpO2 of ≥3% from baseline to a value of ≤94%) and hypercarbia (increase in CO2 tension of ≥5 mmHg from baseline to a value of ≥46 mmHg) in individual subjects were collected. Wilcoxon signed-rank was used for pairwise comparisons among values for the whole cohort (e.g. walking without a mask versus walking with a cloth mask). RESULTS: Among 50 adult volunteers (median age 33 years; 32% with a co-morbidity), there were no episodes of hypoxemia or hypercarbia (0%; 95% confidence interval 0-1.9%). In paired comparisons, there were no statistically significant differences in either CO2 or SpO2 between baseline measurements without a mask and those while wearing either kind of mask mask, both at rest and after walking briskly for ten minutes. INTERPRETATION: The risk of pathologic gas exchange impairment with cloth masks and surgical masks is near-zero in the general adult population.


Subject(s)
COVID-19/prevention & control , Masks , Oxygen/metabolism , Pulmonary Ventilation/physiology , Adult , COVID-19/psychology , COVID-19/transmission , Carbon Dioxide/metabolism , Exercise/physiology , Female , Heart Rate/physiology , Humans , Hypoxia/etiology , Hypoxia/metabolism , Male , Masks/adverse effects , N95 Respirators/adverse effects , Rest/physiology , SARS-CoV-2/isolation & purification , Walking/physiology
16.
Respir Med ; 186: 106530, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316624

ABSTRACT

BACKGROUND: Surgical (SM) or cloth facemasks (CM) has become mandatory in many public spaces during the COVID-19 pandemic. They may interfere with the participation in physical activities. OBJECTIVE: To evaluate how these masks influence dyspnoea (primary outcome), exercise performance and cardiorespiratory response during a 1-min sit-to-stand test (1STST), and to assess masks discomfort sensations. METHODS: A randomized crossover trial was conducted in healthy adults. They performed 3 1STST (with either no mask (NM), a SM, or a CM) separated from each other by 24-72 h. The number of 1STST repetitions and leg rate of perceived exertion (RPE) were measured. Dyspnoea (Borg scale), hearth rate, respiratory rate and SpO2 were recorded before and at the end of 1STST, as well as after a short resting period. Several domains of subjective discomfort perceptions with masks were assessed. RESULTS: Twenty adults aged 22 ± 2y (11 males) were recruited. Wearing the CM generated significantly higher dyspnoea than NM at all time points, but it only became clinically relevant after the 1STST (median difference, 1 [95%CI 0 to 1]). The SM generated a small but significant higher leg RPE than NM (median difference, 1 [95%CI 0 to 1]). The masks had no impact on 1STST performance nor cardiorespiratory parameters. Both masks were rated similarly for discomfort perceptions except for breathing resistance where CM was rated higher. CONCLUSIONS: In healthy adults, the CM and SM had minimal to no impact on dyspnoea, cardiorespiratory parameters, and exercise performance during a short submaximal exercise test.


Subject(s)
COVID-19 , Dyspnea/etiology , Exercise Test , Exercise/physiology , Healthy Volunteers , Leg/physiology , Masks/adverse effects , Physical Exertion/physiology , Sensation/physiology , Cross-Over Studies , Female , Heart Rate/physiology , Humans , Male , Respiration , Young Adult
17.
Sci Rep ; 11(1): 14413, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1309468

ABSTRACT

Lockdowns imposed to stem the spread of COVID-19 massively disrupted the daily routines of many worldwide, but studies to date have been mostly confined to observations within a limited number of countries, based on subjective reports and surveys from specific time periods during the pandemic. We investigated associations between lockdown stringency and objective sleep and resting-heart rate measures in ~ 113,000 users of a consumer sleep tracker across 20 countries from Jan to Jul 2020, compared to an equivalent period in 2019. With stricter lockdown measures, midsleep times were universally delayed, particularly on weekdays, while midsleep variability and resting heart rate declined. These shifts (midsleep: + 0.09 to + 0.58 h; midsleep variability: - 0.12 to - 0.26 h; resting heart rate: - 0.35 to - 2.08 bpm) correlated with the severity of lockdown across different countries (all Ps < 0.001) and highlight the graded influence of stringency lockdowns on human physiology.


Subject(s)
COVID-19 , Communicable Disease Control/statistics & numerical data , Heart Rate/physiology , Sleep/physiology , Humans , Longitudinal Studies , Multilevel Analysis , Quarantine
20.
Appl Physiol Nutr Metab ; 46(7): 693-703, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1269054

ABSTRACT

Face masks are promoted for preventing spread of viruses; however, wearing a mask during exercise might increase CO2 rebreathing, decrease arterial oxygenation, and decrease exercise performance. A systematic review and meta-analysis was conducted on the impact of wearing a mask during exercise. Data sources included SPORTDiscus, PubMed, and Medline. Eligibility criteria included all study designs comparing surgical, N95, or cloth masks to a no mask condition during any type of exercise where exercise performance and/or physiological parameters were evaluated. Healthy and clinical participants were included. Mean differences (MD) or standardized mean differences (SMD) with 95% confidence intervals were calculated and pooled effects assessed. Twenty-two studies involving 1573 participants (620 females, 953 males) were included. Surgical, or N95 masks did not impact exercise performance (SMD -0.05 [-0.16, 0.07] and -0.16 [-0.54, 0.22], respectively) but increased ratings of perceived exertion (SMD 0.33 [0.09, 0.58] and 0.61 [0.23, 0.99]) and dyspnea (SMD 0.6 [0.3, 0.9] for all masks). End-tidal CO2 (MD 3.3 [1.0, 5.6] and 3.7 [3.0, 4.4] mm Hg), and heart rate (MD 2 [0,4] beats/min with N95 masks) slightly increased. Face masks can be worn during exercise with no influences on performance and minimal impacts on physiological variables. PROSPERO registration: CRD42020224988. Novelty: Face masks can be worn during exercise with no impacts on performance and minimal impacts on physiological variables.


Subject(s)
COVID-19/prevention & control , Exercise/physiology , Masks/statistics & numerical data , N95 Respirators/statistics & numerical data , Physical Functional Performance , Carbon Dioxide/metabolism , Female , Heart Rate/physiology , Humans , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL