Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Front Immunol ; 13: 899972, 2022.
Article in English | MEDLINE | ID: covidwho-1963472

ABSTRACT

Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Chemokine CXCL10 , Cytokines , Hematologic Neoplasms/therapy , Humans , Interleukin-15 , RNA, Messenger , SARS-CoV-2
5.
PLoS One ; 17(4): e0267139, 2022.
Article in English | MEDLINE | ID: covidwho-1883691

ABSTRACT

PURPOSE: COVID-19 infection resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to spread across the globe in early 2020. Patients with hematologic malignancies are supposed to have an increased risk of mortality from coronavirus disease of 2019 (COVID-19) infection. From Pakistan, we report the analysis of the outcome and interaction between patient demographics and tumor subtype and COVID-19 infection and hematological malignancy. PATIENTS AND METHODS: This multicenter, retrospective study included adult patients with a history of histologically proven hematological malignancies who were tested positive for COVID-19 via PCR presented at the oncology department of 5 tertiary care hospitals in Pakistan from February to August 2020. A patient with any known hematological malignancy who was positive for COVID-19 on RT-PCR, was included in the study. Chi-square test and Cox-regression hazard regression model was applied considering p ≤ 0.05 significant. RESULTS: A total of 107 patients with hematological malignancies were diagnosed with COVID-19, out of which 82 (76.64%) were alive, and 25 (23.36%) were dead. The significant hematological malignancy was B-cell Lymphoma in dead 4 (16.00%) and alive group 21 (25.61%), respectively. The majority of the patients in both the dead and alive group were on active treatment for hematological malignancy while they came positive for COVID-19 [21 (84.00%) & 48 (58.54%) p 0.020]. All patients in the dead group were admitted to the hospital 25 (100.00%), and among these, 14 (56.00%) were admitted in ICU with a median 11 (6-16.5) number of days. Among those who had contact exposure, the hazard of survival or death in patients with hematological malignancies and COVID-19 positive was 2.18 (CI: 1.90-4.44) times and 3.10 (CI: 2.73-4.60) times in patients with travel history compared to no exposure history (p 0.001). CONCLUSION: Taken together, this data supports the emerging consensus that patients with hematologic malignancies experience significant morbidity and mortality resulting from COVID-19 infection.


Subject(s)
COVID-19 , Hematologic Neoplasms , Adult , Hematologic Neoplasms/therapy , Humans , Pakistan/epidemiology , Retrospective Studies , SARS-CoV-2
6.
J Clin Oncol ; 40(13): 1414-1427, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1883563

ABSTRACT

PURPOSE: To provide real-world evidence on risks and outcomes of breakthrough COVID-19 infections in vaccinated patients with cancer using the largest national cohort of COVID-19 cases and controls. METHODS: We used the National COVID Cohort Collaborative (N3C) to identify breakthrough infections between December 1, 2020, and May 31, 2021. We included patients partially or fully vaccinated with mRNA COVID-19 vaccines with no prior SARS-CoV-2 infection record. Risks for breakthrough infection and severe outcomes were analyzed using logistic regression. RESULTS: A total of 6,860 breakthrough cases were identified within the N3C-vaccinated population, among whom 1,460 (21.3%) were patients with cancer. Solid tumors and hematologic malignancies had significantly higher risks for breakthrough infection (odds ratios [ORs] = 1.12, 95% CI, 1.01 to 1.23 and 4.64, 95% CI, 3.98 to 5.38) and severe outcomes (ORs = 1.33, 95% CI, 1.09 to 1.62 and 1.45, 95% CI, 1.08 to 1.95) compared with noncancer patients, adjusting for age, sex, race/ethnicity, smoking status, vaccine type, and vaccination date. Compared with solid tumors, hematologic malignancies were at increased risk for breakthrough infections (adjusted OR ranged from 2.07 for lymphoma to 7.25 for lymphoid leukemia). Breakthrough risk was reduced after the second vaccine dose for all cancers (OR = 0.04; 95% CI, 0.04 to 0.05), and for Moderna's mRNA-1273 compared with Pfizer's BNT162b2 vaccine (OR = 0.66; 95% CI, 0.62 to 0.70), particularly in patients with multiple myeloma (OR = 0.35; 95% CI, 0.15 to 0.72). Medications with major immunosuppressive effects and bone marrow transplantation were strongly associated with breakthrough risk among the vaccinated population. CONCLUSION: Real-world evidence shows that patients with cancer, especially hematologic malignancies, are at higher risk for developing breakthrough infections and severe outcomes. Patients with vaccination were at markedly decreased risk for breakthrough infections. Further work is needed to assess boosters and new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Hematologic Neoplasms , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Humans , SARS-CoV-2
7.
Blood Cancer J ; 12(5): 86, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1873485

ABSTRACT

The efficacy of SARS-CoV-2 vaccination in patients with hematological malignancies (HM) appears limited due to disease and treatment-associated immune impairment. We conducted a systematic review of prospective studies published from 10/12/2021 onwards in medical databases to assess clinical efficacy parameters, humoral and cellular immunogenicity and adverse events (AE) following two doses of COVID-19 approved vaccines. In 57 eligible studies reporting 7393 patients, clinical outcomes were rarely reported and rates of SARS-CoV-2 infection (range 0-11.9%), symptomatic disease (0-2.7%), hospital admission (0-2.8%), or death (0-0.5%) were low. Seroconversion rates ranged from 38.1-99.1% across studies with the highest response rate in myeloproliferative diseases and the lowest in patients with chronic lymphocytic leukemia. Patients with B-cell depleting treatment had lower seroconversion rates as compared to other targeted treatments or chemotherapy. The vaccine-induced T-cell response was rarely and heterogeneously reported (26.5-85.9%). Similarly, AEs were rarely reported (0-50.9% ≥1 AE, 0-7.5% ≥1 serious AE). In conclusion, HM patients present impaired humoral and cellular immune response to COVID-19 vaccination with disease and treatment specific response patterns. In light of the ongoing pandemic with the easing of mitigation strategies, new approaches to avert severe infection are urgently needed for this vulnerable patient population that responds poorly to current COVID-19 vaccine regimens.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Prospective Studies , SARS-CoV-2
8.
Blood Rev ; 54: 100931, 2022 07.
Article in English | MEDLINE | ID: covidwho-1864540

ABSTRACT

There has been limited data presented to characterize and quantify breakthrough SARS-CoV-2 infections, hospitalizations, and mortality in vaccinated patients with hematologic malignancies (HM). We performed a retrospective cohort study of patient electronic health records of 514,413 fully vaccinated patients from 63 healthcare organizations in the US, including 5956 with HM and 508,457 without malignancies during the period from December 2020 to October 2021. The breakthrough SARS-CoV-2 infections in patients with HM steadily increased and reached 67.7 cases per 1000 persons in October 2021. The cumulative risk of breakthrough infections during the period in patients with HM was 13.4%, ranging from 11.0% for acute lymphocytic leukemia to 17.2% and 17.4% for multiple myeloma and chronic myeloid leukemia respectively, all higher than the risk of 4.5% in patients without malignancies (p < 0.001). No significant racial disparities in breakthrough infections were observed. The overall hospitalization risk was 37.8% for patients with HM who had breakthrough infections, significantly higher than 2.2% for those who had no breakthrough infections (hazard ratio or HR: 34.49, 95% CI: 25.93-45.87). The overall mortality risk was 5.7% for patients with HM who had breakthrough infections, significantly higher than the 0.8% for those who had no breakthrough infections (HR: 10.25, 95% CI: 5.94-17.69). In summary, this study shows that among the fully vaccinated population, patients with HM had significantly higher risk for breakthrough infections compared to patients without cancer and that breakthrough infections in patients with HM were associated with significant clinical outcomes including hospitalizations and mortality.


Subject(s)
COVID-19 , Hematologic Neoplasms , COVID-19/epidemiology , COVID-19 Vaccines , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2
9.
Blood ; 140(3): 236-252, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1840936

ABSTRACT

The coronavirus infectious disease (COVID-19) shows a remarkable symptomatic heterogeneity. Several risk factors including advanced age, previous illnesses, and a compromised immune system contribute to an unfavorable outcome. In patients with hematologic malignancy, the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly reduced explaining why the mortality rate of hematologic patients hospitalized for a SARS-CoV-2 infection is about 34%. Active immunization is an essential pillar to prevent SARS-CoV-2 infections in patients with hematologic malignancy. However, the immune response to SARS-CoV-2 vaccines may be significantly impaired, as only half of patients with hematologic malignancy develop a measurable antiviral antibody response. The subtype of hematologic malignancy and B cell-depleting treatment predict a poor immune response to vaccination. Recently, antiviral drugs and monoclonal antibodies for pre-exposure or postexposure prophylaxis and for early treatment of COVID-19 have become available. These therapies should be offered to patients at high risk for severe COVID-19 and vaccine nonresponders. Importantly, as the virus evolves, some therapies may lose their clinical efficacy against new variants. Therefore, the ongoing pandemic will remain a major challenge for patients with hematologic malignancy and their caregivers who need to constantly monitor the scientific progress in this area.


Subject(s)
COVID-19 , Communicable Diseases , Hematologic Neoplasms , Antiviral Agents , COVID-19 Vaccines/therapeutic use , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , SARS-CoV-2
10.
Leukemia ; 36(6): 1467-1480, 2022 06.
Article in English | MEDLINE | ID: covidwho-1830027

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2
11.
Blood Adv ; 6(7): 2014-2034, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1765426

ABSTRACT

The objectives of this study were to assess the immunogenicity and safety of COVID-19 vaccines in patients with hematologic malignancies. A systematic review and meta-analysis of clinical studies of immune responses to COVID-19 vaccination stratified by underlying malignancy and published from January 1, 2021, to August 31, 2021, was conducted using MEDLINE, EMBASE, and Cochrane CENTRAL. Primary outcome was the rate of seropositivity after 2 doses of COVID-19 vaccine with rates of seropositivity after 1 dose, rates of positive neutralizing antibodies, cellular responses, and adverse events as secondary outcomes. Rates were pooled from single-arm studies while rates of seropositivity were compared against the rate in healthy controls for comparator studies using a random effects model and expressed as a pooled odds ratios with 95% confidence intervals. Forty-four studies (16 mixed group, 28 disease specific) with 7064 patients were included in the analysis (2331 after first dose, 4733 after second dose). Overall seropositivity rates were 62% to 66% after 2 doses of COVID-19 vaccine and 37% to 51% after 1 dose. The lowest seropositivity rate was 51% in patients with chronic lymphocytic leukemia and was highest in patients with acute leukemia (93%). After 2 doses, neutralizing antibody response rates were 57% to 60%, and cellular response rates were 40% to 75%. Active treatment, ongoing or recent treatment with targeted and CD-20 monoclonal antibody therapies within 12 months were associated with poor immune responses to COVID-19 vaccine. New approaches to prevention are urgently required to reduce COVID-19 infection morbidity and mortality in high-risk patient groups that respond poorly to COVID-19 vaccination.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , SARS-CoV-2
12.
Curr Treat Options Oncol ; 23(5): 688-702, 2022 05.
Article in English | MEDLINE | ID: covidwho-1763473

ABSTRACT

OPINION STATEMENT: The coronavirus disease-19 (COVID-19) pandemic has posed numerous challenges to the global healthcare system. Of particular gravity is adult and pediatric patients with hematologic malignancies who are among the most vulnerable groups of patients at risk of severe COVID-19 outcomes. In the early phases of the pandemic, several treatment modifications were proposed for patients with leukemia. Largely speaking, these were adopting less-intense therapies and more utilization of the outpatient setting. Over time, our understanding and management have become more nuanced. Furthermore, equipped with vaccinations to prevent COVID-19 infection and availability of treatments in the presence of COVID-19 infection, the recommendations on management of patients with leukemia have evolved. Patient's leukemia characteristics, possibility of targeted therapy, vaccination status, symptomatology, comorbidities, goal of anti-leukemic therapy, the intensity of therapy, the setting of treatment, as well as loco regional factors like dynamic incidence of COVID-19 in the community and hospital/ICU bed status are among many factors that influence the decisions. Furthermore, the oncology community has adopted delaying the anti-leukemia therapy for a limited time frame, if clinically possible, so as to still deliver most appropriate therapy while minimizing risks. Early adoption of growth factor support and conservative blood transfusion practices have helped as well. In this review, we discuss the impact of COVID-19 on outcomes and share considerations for treatments of leukemias. We describe the impact on both clinical care (from diagnosis to treatment) and research, and cover the literature on vaccines and treatments for COVID-19 in relation to leukemia.


Subject(s)
Antineoplastic Agents , COVID-19 , Hematologic Neoplasms , Leukemia , COVID-19/epidemiology , Child , Hematologic Neoplasms/therapy , Humans , Leukemia/epidemiology , Leukemia/therapy , Pandemics , SARS-CoV-2
13.
Acta Haematol ; 145(3): 257-266, 2022.
Article in English | MEDLINE | ID: covidwho-1714479

ABSTRACT

Patients with specific hematological malignancies (HM) are at increased risk for severe disease and death from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy subjects, vaccination against SARS-CoV-2 has been demonstrated to be highly effective in disease prevention; however, immunocompromised patients were largely excluded from vaccine randomized controlled trials. In this review, we overview available non-randomized studies addressing effectiveness and safety of several coronavirus disease 2019 (COVID-19) vaccines in patients with HM. Overall, COVID-19 vaccines are safe in patients with HM, with adverse events similar to those in the general population. Though serology testing is not recommended as a test to evaluate vaccine effectiveness, a correlation between higher antibody levels and protection against infection has been reported. Studies evaluating humoral response to COVID-19 vaccine in HM patients demonstrate low immunogenicity, mainly in patients with lymphoproliferative disorders, as well as with certain drugs, including mainly anti-CD20 antibodies, Bruton tyrosine kinase inhibitors, and also ruxolitinib and venetoclax. Seropositivity rates of patients with non-Hodgkin lymphoma and chronic lymphocytic leukemia following mRNA vaccination reach 40%-50%. T-cell responses to vaccination are also impaired among these patients. Better humoral response rates are reported in multiple myeloma patients and hematopoietic stem-cell transplant, reaching ∼75%-80%, but not in patients following chimeric antigen receptor T-cell therapy. Patients with chronic myeloid leukemia and myeloproliferative diseases have high response rate to vaccination. Third mRNA vaccine dose is currently recommended to all HM patients. Alternative approaches for vaccination and prevention in patients unable to mount an immune response following full vaccination are provided in the review.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
14.
Br J Haematol ; 197(3): 302-305, 2022 05.
Article in English | MEDLINE | ID: covidwho-1714139

ABSTRACT

We have vaccinated 392 patients with two doses of mRNA COMIRNATY vaccine with an overall antibody response of 70% (best in cMPN, worst in CLL). We have then vaccinated 80 patients who did not achieve seroconversion or were low responders with a third dose of COMIRNATY vaccine. Our first results show promise, especially for patients on anti-CD38 therapy.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Hematologic Neoplasms/therapy , Humans , SARS-CoV-2
15.
Turk J Haematol ; 39(1): 43-54, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1707760

ABSTRACT

Objective: Patients with solid malignancies are more vulnerable to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection than the healthy population. The outcome of SARS-CoV-2 infection in highly immunosuppressed populations, such as in patients with hematological malignancies, is a point of interest. We aimed to analyze the symptoms, complications, intensive care unit admissions, and mortality rates of patients with hematological malignancies infected with SARS-CoV-2 in Turkey. Materials and Methods: In this multicenter study, we included 340 adult and pediatric patients diagnosed with SARS-CoV-2 from March to November 2020. Diagnosis and status of primary disease, treatment schedules for hematological malignancies, time from last treatment, life expectancy related to the hematological disease, and comorbidities were recorded, together with data regarding symptoms, treatment, and outcome of SARS-CoV-2 infection. Results: Forty four patients were asymptomatic at diagnosis of SARS-CoV- 2 infection. Among symptomatic patients, fever, cough, and dyspnea were observed in 62.6%, 48.8%, and 41.8%, respectively. Sixty-nine (20%) patients had mild SARS-CoV-2 disease, whereas moderate, severe, and critical disease was reported in 101 (29%), 71 (20%), and 55 (16%) patients, respectively. Of the entire cohort, 251 (73.8%) patients were hospitalized for SARS-CoV-2. Mortality related to SARS-CoV-2 infection was 26.5% in the entire cohort; this comprised 4.4% of those patients with mild disease, 12.4% of those with moderate disease, and 83% of those with severe or critical disease. Active hematological disease, lower life expectancy related to primary hematological disease, neutropenia at diagnosis of SARS-CoV-2, ICU admission, and first-line therapy used for coronavirus disease-2019 treatment were found to be related to higher mortality rates. Treatments with hydroxychloroquine alone or in combination with azithromycin were associated with a higher rate of mortality in comparison to favipiravir use. Conclusion: Patients with hematological malignancy infected with SARS-CoV-2 have an increased risk of severe disease and mortality.


Subject(s)
COVID-19 , Hematologic Neoplasms , Adult , Amides/administration & dosage , Azithromycin/administration & dosage , COVID-19/complications , COVID-19/mortality , Child , Hematologic Neoplasms/complications , Hematologic Neoplasms/mortality , Hematologic Neoplasms/therapy , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Pyrazines/administration & dosage , SARS-CoV-2 , Turkey/epidemiology
16.
JAMA Netw Open ; 5(2): e220130, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1700096

ABSTRACT

Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19-related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/mortality , Lung Neoplasms/mortality , SARS-CoV-2 , Aged , Aged, 80 and over , Cohort Studies , Drug Therapy , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Immunotherapy , Lung Neoplasms/complications , Lung Neoplasms/therapy , Male , Middle Aged , Prospective Studies , Registries , United Kingdom
17.
Acta Haematol ; 145(3): 244-256, 2022.
Article in English | MEDLINE | ID: covidwho-1673577

ABSTRACT

Patients with hematologic malignancies are particularly vulnerable to infections due to underlying humoral and cellular immune dysfunction, cytotoxic chemotherapy regimens, advanced age, and the presence of comorbid conditions. Infection from severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic, has become a leading cause of death globally and has disproportionally affected this high-risk population. Here, we review the cumulative evidence demonstrating worse outcomes for patients with hematologic malignancies when compared to patients with solid tumors and the general population. We examine risk factors shared with the general population (age, sex, comorbid conditions, and race) and those that are cancer-specific (cytotoxic chemotherapy, progressive disease, and cancer type), all of which confer an increased risk of severe COVID-19. Despite the historical exclusion of cancer patients from COVID-19 therapy trials, we review the emerging evidence that patients with hematologic malignancies benefit from specific treatments such as convalescent plasma. Although COVID-19 vaccines are significantly less effective in this patient population, encouraging results are observed in a subset of these patients after receiving a booster dose.


Subject(s)
COVID-19 , Hematologic Neoplasms , Neoplasms , COVID-19/complications , COVID-19/therapy , COVID-19 Vaccines , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Humans , Immunization, Passive , Pandemics
18.
ESMO Open ; 7(2): 100403, 2022 04.
Article in English | MEDLINE | ID: covidwho-1654423

ABSTRACT

BACKGROUND: The COVID-19 pandemic has created enormous challenges for the clinical management of patients with hematological malignancies (HMs), raising questions about the optimal care of this patient group. METHODS: This consensus manuscript aims at discussing clinical evidence and providing expert advice on statements related to the management of HMs in the COVID-19 pandemic. For this purpose, an international consortium was established including a steering committee, which prepared six working packages addressing significant clinical questions from the COVID-19 diagnosis, treatment, and mitigation strategies to specific HMs management in the pandemic. During a virtual consensus meeting, including global experts and lead by the European Society for Medical Oncology and the European Hematology Association, statements were discussed and voted upon. When a consensus could not be reached, the panel revised statements to develop consensual clinical guidance. RESULTS AND CONCLUSION: The expert panel agreed on 33 statements, reflecting a consensus, which will guide clinical decision making for patients with hematological neoplasms during the COVID-19 pandemic.


Subject(s)
COVID-19 , Hematologic Neoplasms , COVID-19 Testing , Consensus , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL