Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add filters

Document Type
Year range
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1486398

ABSTRACT

The COVID-19 pandemic led to widespread mandates requiring the wearing of face masks, which led to debates on their benefits and possible adverse effects. To that end, the physiological effects at the systemic and at the brain level are of interest. We have investigated the effect of commonly available face masks (FFP2 and surgical) on cerebral hemodynamics and oxygenation, particularly microvascular cerebral blood flow (CBF) and blood/tissue oxygen saturation (StO2), measured by transcranial hybrid near-infrared spectroscopies and on systemic physiology in 13 healthy adults (ages: 23 to 33 y). The results indicate small but significant changes in cerebral hemodynamics while wearing a mask. However, these changes are comparable to those of daily life activities. This platform and the protocol provides the basis for large or targeted studies of the effects of mask wearing in different populations and while performing critical tasks.


Subject(s)
Brain/physiology , Masks , Activities of Daily Living , Adult , Brain/blood supply , Brain/metabolism , COVID-19/prevention & control , Female , Healthy Volunteers , Hemodynamics , Humans , Male , Microcirculation , Monitoring, Physiologic , Oxygen/metabolism , SARS-CoV-2 , Spectroscopy, Near-Infrared , Young Adult
2.
PLoS One ; 16(10): e0258368, 2021.
Article in English | MEDLINE | ID: covidwho-1468173

ABSTRACT

Effective treatment of respiratory infections continues to be a major challenge. In high doses (≥160 ppm), inhaled Nitric Oxide (iNO) has been shown to act as a broad-spectrum antimicrobial agent, including its efficacy in vitro for coronavirus family. However, the safety of prolonged in vivo implementation of high-dose iNO therapy has not been studied. Herein we aim to explore the feasibility and safety of delivering continuous high-dose iNO over an extended period of time using an in vivo animal model. Yorkshire pigs were randomized to one of the following two groups: group 1, standard ventilation; and group 2, standard ventilation + continuous iNO 160 ppm + methylene blue (MB) as intravenous bolus, whenever required, to maintain metHb <6%. Both groups were ventilated continuously for 6 hours, then the animals were weaned from sedation, mechanical ventilation and followed for 3 days. During treatment, and on the third post-operative day, physiologic assessments were performed to monitor lung function and other significative markers were assessed for potential pulmonary or systemic injury. No significant change in lung function, or inflammatory markers were observed during the study period. Both gas exchange function, lung tissue cytokine analysis and histology were similar between treated and control animals. During treatment, levels of metHb were maintained <6% by administration of MB, and NO2 remained <5 ppm. Additionally, considering extrapulmonary effects, no significant changes were observed in biochemistry markers. Our findings showed that high-dose iNO delivered continuously over 6 hours with adjuvant MB is clinically feasible and safe. These findings support the development of investigations of continuous high-dose iNO treatment of respiratory tract infections, including SARS-CoV-2.


Subject(s)
Anti-Infective Agents/administration & dosage , Nitric Oxide/administration & dosage , Administration, Inhalation , Animals , Cytokines/analysis , Cytokines/blood , Drug Evaluation, Preclinical , Hemodynamics , Hemoglobin A/analysis , Lung/metabolism , Lung/pathology , Male , Methemoglobin/analysis , Methylene Blue/administration & dosage , Models, Animal , Nitrates/analysis , Nitrites/analysis , Swine
3.
PLoS One ; 15(6): e0233981, 2020.
Article in English | MEDLINE | ID: covidwho-1456053

ABSTRACT

We aimed to examine aneurysm hemodynamics with intra-saccular pressure measurement, and compare the effects of coiling, stenting and stent-assisted coiling in proximal segments of intracranial circulation. A cohort of 45 patients underwent elective endovascular coil embolization (with or without stent) for intracranial aneurysm at our department. Arterial pressure transducer was used for all measurements. It was attached to proximal end of the microcatheter. Measurements were taken in the parent artery before and after embolization, at the aneurysm dome before embolization, after stent implantation, and after embolization. Stent-assisted coiling was performed with 4 different stents: LVIS and LVIS Jr (Microvention, Tustin, CA, USA), Leo (Balt, Montmorency, France), Barrel VRD (Medtronic/ Covidien, Irvine, CA, USA). Presence of the stent showed significant reverse correlation with intra-aneurysmal pressure-both systolic and diastolic-after its implantation (r = -0.70 and r = -0.75, respectively), which was further supported by correlations with stent cell size-r = 0.72 and r = 0.71, respectively (P<0.05). Stent implantation resulted in significant decrease in diastolic intra-aneurysmal pressure (p = 0.046). Systolic or mean intra-aneurysmal pressure did not differ significantly. Embolization did not significantly change the intra-aneurysmal pressure in matched pairs, regardless of the use of stent (p>0.05). In conclusion, low-profile braided stents show a potential to divert blood flow, there was significant decrease in diastolic pressure after stent placement. Flow-diverting properties were related to stent porosity. Coiling does not significantly change the intra-aneurysmal pressure, regardless of packing density.


Subject(s)
Blood Pressure , Intracranial Aneurysm/physiopathology , Stents , Aged , Arterial Pressure , Blood Circulation , Blood Vessel Prosthesis , Brain/blood supply , Brain/physiopathology , Embolization, Therapeutic , Female , Hemodynamics , Humans , Intracranial Aneurysm/therapy , Male , Middle Aged
4.
Interv Neuroradiol ; 26(5): 557-565, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1455862

ABSTRACT

BACKGROUND: The Low-profile Visualized Intraluminal Support device (LVIS) has been successfully used to treat cerebral aneurysm, and the push-pull technique has been used clinically to compact the stent across aneurysm orifice. Our aim was to exhibit the hemodynamic effect of the compacted LVIS stent. METHODS: Two patient-specific aneurysm models were constructed from three-dimensional angiographic images. The uniform LVIS stent, compacted LVIS and Pipeline Embolization Device (PED) with or without coil embolization were virtually deployed into aneurysm models to perform hemodynamic analysis. Intra-aneurysmal flow parameters were calculated to assess hemodynamic differences among different models. RESULTS: The compacted LVIS had the highest metal coverage across the aneurysm orifice (case 1, 46.37%; case 2, 67.01%). However, the PED achieved the highest pore density (case 1, 19.56 pores/mm2; case 2, 18.07 pores/mm2). The compacted LVIS produced a much higher intra-aneurysmal flow reduction than the uniform LVIS. The PED showed a higher intra-aneurysmal flow reduction than the compacted LVIS in case 1, but the results were comparable in case 2. After stent placement, the intra-aneurysmal flow was further reduced as subsequent coil embolization. The compacted LVIS stent with coils produced a similar reduction in intra-aneurysmal flow to that of the PED. CONCLUSIONS: The combined characteristics of stent metal coverage and pore density should be considered when assessing the flow diversion effects of stents. More intra-aneurysmal flow reductions could be introduced by compacted LVIS stent than the uniform one. Compared with PED, compacted LVIS stent may exhibit a flow-diverting effect comparable to that of the PED.


Subject(s)
Embolization, Therapeutic/methods , Intracranial Aneurysm/therapy , Stents , Subarachnoid Hemorrhage/therapy , Angiography, Digital Subtraction , Cerebral Angiography , Computer Simulation , Hemodynamics , Humans , Hydrodynamics , Imaging, Three-Dimensional , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Angiography , Prosthesis Design , Subarachnoid Hemorrhage/diagnostic imaging
5.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1450314

ABSTRACT

The COVID-19 pandemic led to widespread mandates requiring the wearing of face masks, which led to debates on their benefits and possible adverse effects. To that end, the physiological effects at the systemic and at the brain level are of interest. We have investigated the effect of commonly available face masks (FFP2 and surgical) on cerebral hemodynamics and oxygenation, particularly microvascular cerebral blood flow (CBF) and blood/tissue oxygen saturation (StO2), measured by transcranial hybrid near-infrared spectroscopies and on systemic physiology in 13 healthy adults (ages: 23 to 33 y). The results indicate small but significant changes in cerebral hemodynamics while wearing a mask. However, these changes are comparable to those of daily life activities. This platform and the protocol provides the basis for large or targeted studies of the effects of mask wearing in different populations and while performing critical tasks.


Subject(s)
Brain/physiology , Masks , Activities of Daily Living , Adult , Brain/blood supply , Brain/metabolism , COVID-19/prevention & control , Female , Healthy Volunteers , Hemodynamics , Humans , Male , Microcirculation , Monitoring, Physiologic , Oxygen/metabolism , SARS-CoV-2 , Spectroscopy, Near-Infrared , Young Adult
6.
J Physiol ; 599(18): 4269-4285, 2021 09.
Article in English | MEDLINE | ID: covidwho-1443340

ABSTRACT

KEY POINTS: The impact of SARS-CoV-2 infection on autonomic and cardiovascular function in otherwise healthy individuals is unknown. For the first time it is shown that young adults recovering from SARS-CoV-2 have elevated resting sympathetic activity, but similar heart rate and blood pressure, compared with control subjects. Survivors of SARS-CoV-2 also exhibit similar sympathetic nerve activity and haemodynamics, but decreased pain perception, during a cold pressor test compared with healthy controls. Further, these individuals display higher sympathetic nerve activity throughout an orthostatic challenge, as well as an exaggerated heart rate response to orthostasis. If similar autonomic dysregulation, like that found here in young individuals, is present in older adults following SARS-CoV-2 infection, there may be substantial adverse implications for cardiovascular health. ABSTRACT: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit systemic adverse physiological effects. However, the impact of SARS-CoV-2 on autonomic and cardiovascular function in otherwise healthy individuals remains unclear. Young adults who tested positive for SARS-CoV-2 (COV+; n = 16, 8 F) visited the laboratory 35 ± 16 days following diagnosis. Muscle sympathetic nerve activity (MSNA), systolic (SBP) and diastolic (DBP) blood pressure, and heart rate (HR) were measured in participants at rest and during a 2 min cold pressor test (CPT) and 5 min each at 30° and 60° head-up tilt (HUT). Data were compared with age-matched healthy controls (CON; n = 14, 9 F). COV+ participants (18.2 ± 6.6 bursts min-1 ) had higher resting MSNA burst frequency compared with CON (12.7 ± 3.4 bursts min-1 ) (P = 0.020), as well as higher MSNA burst incidence and total activity. Resting HR, SBP and DBP were not different. During CPT, there were no differences in MSNA, HR, SBP or DBP between groups. COV+ participants reported less pain during the CPT compared with CON (5.7 ± 1.8 vs. 7.2 ± 1.9 a.u., P = 0.036). MSNA was higher in COV+ compared with CON during HUT. There was a group-by-position interaction in MSNA burst incidence, as well as HR, in response to HUT. These results indicate resting sympathetic activity, but not HR or BP, may be elevated following SARS-CoV-2 infection. Further, cardiovascular and perceptual responses to physiological stress may be altered, including both exaggerated (orthostasis) and suppressed (pain perception) responses, compared with healthy young adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Blood Pressure , Heart Rate , Hemodynamics , Humans , Muscle, Skeletal , Sympathetic Nervous System , Young Adult
7.
Bull Exp Biol Med ; 171(4): 453-457, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1427311

ABSTRACT

Microcirculatory hemodynamic indexes (HI) were assessed in patients with moderate and severe COVID-19. In both groups, a significant increase in the absolute spectral indexes (HI1, HI2, and HI3) and the ratio of low-frequency to high-frequency component (HI1/HI3) was revealed. In the group of severe infection, only the "slow" index (low-frequency HI1) of microcirculatory hemodynamics was significantly lower. The oscillatory indices MAYER1-3 and RESP1-3 were reduced in patients of both groups. The aggravation of the disease course was accompanied by depression of the low-frequency index HI1. Regulatory shifts compensate for disturbances in microcirculatory processes in moderate COVID-19, but severe course was associated with their decompensation.


Subject(s)
COVID-19/physiopathology , Microcirculation/physiology , Hemodynamics/physiology , Humans
9.
Eur Heart J Cardiovasc Imaging ; 22(11): 1241-1254, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1376291

ABSTRACT

AIMS: Cardiovascular involvement is common in COVID-19. We sought to describe the haemodynamic profiles of hospitalized COVID-19 patients and determine their association with mortality. METHODS AND RESULTS: Consecutive hospitalized patients diagnosed with COVID-19 infection underwent clinical evaluation using the Modified Early Warning Score (MEWS) and a full non-invasive echocardiographic haemodynamic evaluation, irrespective of clinical indication, as part of a prospective predefined protocol. Patients were stratified based on filling pressure and output into four groups. Multivariable Cox-Hazard analyses determined the association between haemodynamic parameters with mortality. Among 531 consecutive patients, 44% of patients had normal left ventricular (LV) and right ventricular (RV) haemodynamic status. In contrast to LV haemodynamic parameters, RV parameters worsened with higher MEWS stage. While RV parameters did not have incremental risk prediction value above MEWS, LV stroke volume index, E/e' ratio, and LV stroke work index were all independent predictors of outcome, particularly in severe disease. Patients with LV or RV with high filling pressure and low output had the worse outcome, and patients with normal haemodynamics had the best (P < 0.0001). CONCLUSION: In hospitalized patients with COVID-19, almost half have normal left and right haemodynamics at presentation. RV but not LV haemodynamics are related to easily obtainable clinical parameters. LV but not RV haemodynamics are independent predictors of mortality, mostly in patients with severe disease.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Hemodynamics , Humans , Prospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Left , Ventricular Function, Right
10.
Eur Heart J Cardiovasc Imaging ; 22(11): 1255-1256, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1373636
11.
Lancet ; 398(10304): 991-1001, 2021 09 11.
Article in English | MEDLINE | ID: covidwho-1373313

ABSTRACT

BACKGROUND: Previous studies have suggested that haemodynamic-guided management using an implantable pulmonary artery pressure monitor reduces heart failure hospitalisations in patients with moderately symptomatic (New York Heart Association [NYHA] functional class III) chronic heart failure and a hospitalisation in the past year, irrespective of ejection fraction. It is unclear if these benefits extend to patients with mild (NYHA functional class II) or severe (NYHA functional class IV) symptoms of heart failure or to patients with elevated natriuretic peptides without a recent heart failure hospitalisation. This trial was designed to evaluate whether haemodynamic-guided management using remote pulmonary artery pressure monitoring could reduce heart failure events and mortality in patients with heart failure across the spectrum of symptom severity (NYHA funational class II-IV), including those with elevated natriuretic peptides but without a recent heart failure hospitalisation. METHODS: The randomised arm of the haemodynamic-GUIDEed management of Heart Failure (GUIDE-HF) trial was a multicentre, single-blind study at 118 centres in the USA and Canada. Following successful implantation of a pulmonary artery pressure monitor, patients with all ejection fractions, NYHA functional class II-IV chronic heart failure, and either a recent heart failure hospitalisation or elevated natriuretic peptides (based on a-priori thresholds) were randomly assigned (1:1) to either haemodynamic-guided heart failure management based on pulmonary artery pressure or a usual care control group. Patients were masked to their study group assignment. Investigators were aware of treatment assignment but did not have access to pulmonary artery pressure data for control patients. The primary endpoint was a composite of all-cause mortality and total heart failure events (heart failure hospitalisations and urgent heart failure hospital visits) at 12 months assessed in all randomly assigned patients. Safety was assessed in all patients. A pre-COVID-19 impact analysis for the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT03387813. FINDINGS: Between March 15, 2018, and Dec 20, 2019, 1022 patients were enrolled, with 1000 patients implanted successfully, and follow-up was completed on Jan 8, 2021. There were 253 primary endpoint events (0·563 per patient-year) among 497 patients in the haemodynamic-guided management group (treatment group) and 289 (0·640 per patient-year) in 503 patients in the control group (hazard ratio [HR] 0·88, 95% CI 0·74-1·05; p=0·16). A prespecified COVID-19 sensitivity analysis using a time-dependent variable to compare events before COVID-19 and during the pandemic suggested a treatment interaction (pinteraction=0·11) due to a change in the primary endpoint event rate during the pandemic phase of the trial, warranting a pre-COVID-19 impact analysis. In the pre-COVID-19 impact analysis, there were 177 primary events (0·553 per patient-year) in the intervention group and 224 events (0·682 per patient-year) in the control group (HR 0·81, 95% CI 0·66-1·00; p=0·049). This difference in primary events almost disappeared during COVID-19, with a 21% decrease in the control group (0·536 per patient-year) relative to pre-COVID-19, virtually no change in the treatment group (0·597 per patient-year), and no difference between groups (HR 1·11, 95% CI 0·80-1·55; p=0·53). The cumulative incidence of heart failure events was not reduced by haemodynamic-guided management (0·85, 0·70-1·03; p=0·096) in the overall study analysis but was significantly decreased in the pre-COVID-19 impact analysis (0·76, 0·61-0·95; p=0·014). 1014 (99%) of 1022 patients had freedom from device or system-related complications. INTERPRETATION: Haemodynamic-guided management of heart failure did not result in a lower composite endpoint rate of mortality and total heart failure events compared with the control group in the overall study analysis. However, a pre-COVID-19 impact analysis indicated a possible benefit of haemodynamic-guided management on the primary outcome in the pre-COVID-19 period, primarily driven by a lower heart failure hospitalisation rate compared with the control group. FUNDING: Abbott.


Subject(s)
Electrodes, Implanted , Heart Failure , Hemodynamics , Hospitalization/statistics & numerical data , Pulmonary Artery , Aged , COVID-19 , Female , Heart Failure/classification , Heart Failure/physiopathology , Hemodynamics/physiology , Hospitalization/trends , Humans , Male , Mortality/trends , Remote Sensing Technology
12.
Physiol Rep ; 9(17): e14998, 2021 09.
Article in English | MEDLINE | ID: covidwho-1374672

ABSTRACT

The spread of the novel coronavirus 2019 (COVID-19) has caused a global pandemic. The disease has spread rapidly, and research shows that COVID-19 can induce long-lasting cardiac damage. COVID-19 can result in elevated cardiac biomarkers indicative of acute cardiac injury, and research utilizing echocardiography has shown that there is mechanical dysfunction in these patients as well, especially when observing the isovolumic, systolic, and diastolic portions of the cardiac cycle. The purpose of this study was to present two case studies on COVID-19 positive patients who had their cardiac mechanical function assessed every day during the acute period to show that cardiac function in these patients was altered, and the damage occurring can change from day-to-day. Participant 1 showed compromised cardiac function in the systolic time, diastolic time, isovolumic time, and the calculated heart performance index (HPI), and these impairments were sustained even 23 days post-symptom onset. Furthermore, Participant 1 showed prolonged systolic periods that lasted longer than the diastolic periods, indicative of elevated pulmonary artery pressure. Participant 2 showed decreases in systole and consequently, increases in HPI during the 3 days post-symptom onset, and these changes returned to normal after day 4. These results showed that daily observation of cardiac function can provide detailed information about the overall mechanism by which cardiac dysfunction is occurring and that COVID-19 can induce cardiac damage in unique patterns and thus can be studied on a case-by-case basis, day-to-day during infection. This could allow us to move toward more personalized cardiovascular medical treatment.


Subject(s)
COVID-19/physiopathology , Heart Diseases/physiopathology , Heart/physiopathology , Hemodynamics , SARS-CoV-2/pathogenicity , Ventricular Function , Adult , COVID-19/diagnosis , COVID-19/virology , Diagnostic Techniques, Cardiovascular/instrumentation , Heart/virology , Heart Diseases/diagnosis , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Male , Middle Aged , Predictive Value of Tests , Time Factors , Transducers
13.
J Physiol ; 599(18): 4269-4285, 2021 09.
Article in English | MEDLINE | ID: covidwho-1358637

ABSTRACT

KEY POINTS: The impact of SARS-CoV-2 infection on autonomic and cardiovascular function in otherwise healthy individuals is unknown. For the first time it is shown that young adults recovering from SARS-CoV-2 have elevated resting sympathetic activity, but similar heart rate and blood pressure, compared with control subjects. Survivors of SARS-CoV-2 also exhibit similar sympathetic nerve activity and haemodynamics, but decreased pain perception, during a cold pressor test compared with healthy controls. Further, these individuals display higher sympathetic nerve activity throughout an orthostatic challenge, as well as an exaggerated heart rate response to orthostasis. If similar autonomic dysregulation, like that found here in young individuals, is present in older adults following SARS-CoV-2 infection, there may be substantial adverse implications for cardiovascular health. ABSTRACT: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit systemic adverse physiological effects. However, the impact of SARS-CoV-2 on autonomic and cardiovascular function in otherwise healthy individuals remains unclear. Young adults who tested positive for SARS-CoV-2 (COV+; n = 16, 8 F) visited the laboratory 35 ± 16 days following diagnosis. Muscle sympathetic nerve activity (MSNA), systolic (SBP) and diastolic (DBP) blood pressure, and heart rate (HR) were measured in participants at rest and during a 2 min cold pressor test (CPT) and 5 min each at 30° and 60° head-up tilt (HUT). Data were compared with age-matched healthy controls (CON; n = 14, 9 F). COV+ participants (18.2 ± 6.6 bursts min-1 ) had higher resting MSNA burst frequency compared with CON (12.7 ± 3.4 bursts min-1 ) (P = 0.020), as well as higher MSNA burst incidence and total activity. Resting HR, SBP and DBP were not different. During CPT, there were no differences in MSNA, HR, SBP or DBP between groups. COV+ participants reported less pain during the CPT compared with CON (5.7 ± 1.8 vs. 7.2 ± 1.9 a.u., P = 0.036). MSNA was higher in COV+ compared with CON during HUT. There was a group-by-position interaction in MSNA burst incidence, as well as HR, in response to HUT. These results indicate resting sympathetic activity, but not HR or BP, may be elevated following SARS-CoV-2 infection. Further, cardiovascular and perceptual responses to physiological stress may be altered, including both exaggerated (orthostasis) and suppressed (pain perception) responses, compared with healthy young adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Blood Pressure , Heart Rate , Hemodynamics , Humans , Muscle, Skeletal , Sympathetic Nervous System , Young Adult
14.
Acta Anaesthesiol Scand ; 65(10): 1447-1456, 2021 11.
Article in English | MEDLINE | ID: covidwho-1348115

ABSTRACT

INTRODUCTION: Dexmedetomidine has been suggested to be a promising sedative for patients with Covid-19 infection (CV19). However, use of dexmedetomidine is limited by its heart rate (HR) and arterial blood pressure lowering effects. Moreover, CV19 is associated with cardiac manifestations including bradyarrythmias. The hemodynamic effects of dexmedetomidine have not been previously studied in CV19 patients. We evaluated the effects of dexmedetomidine on hemodynamic and respiratory parameters of CV19 patients. METHODS: In this single center study, all CV19 patients receiving dexmedetomidine for sedation during a one year period were included. Our primary outcomes included changes in HR, mean arterial pressure (MAP), respiratory rate (RR), partial oxygen pressure of arterial blood/fraction of inspired oxygen-ratio (PF-ratio), and Richmond Agitation and Sedation Score (RASS) during dexmedetomidine administration. RESULTS: We identified 39 patients with a mean (SD) age of 58.3 (12.7) years. After initiation of dexmedetomidine, HR decreased by 16.9 (3.3) beats/min (95% CI 9.5-22.4; p < 0.001). During the 12-hour follow-up period, HR decrease was significant at 2 to 12 h. Incident bradycardia (<45/min) was reported in 12 (30.8%) patients and it was associated with lower plasma C-reactive protein, Pro-calcitonin, and troponin T levels. There was no change in MAP compared to baseline. Dexmedetomidine administration was associated with improvement of PF-ratio (p < 0.001) and with decrease of RASS (p = 0.004). CONCLUSIONS: Dexmedetomidine is an effective sedative for CV19 patients and may improve their oxygenation. However, dexmedetomidine administration is associated with marked decline in HR and with a high incidence of bradycardia in patients with CV19.


Subject(s)
COVID-19 , Dexmedetomidine , Critical Illness , Dexmedetomidine/pharmacology , Hemodynamics , Humans , Hypnotics and Sedatives/pharmacology , Middle Aged , Retrospective Studies , SARS-CoV-2
16.
Int J Environ Res Public Health ; 18(11)2021 06 06.
Article in English | MEDLINE | ID: covidwho-1259493

ABSTRACT

(1) Background: Prolonged lockdowns with stay-at-home orders have been introduced in many countries since the outbreak of the COVID-19 pandemic. They have caused a drastic change in the everyday lives of people living in urbanized areas, and are considered to contribute to a modified perception of the public space. As research related to the impact of COVID-19 restrictions on mental health and well-being emerges, the associated longitudinal changes of brain hemodynamics in healthy adults remain largely unknown. (2) Methods: this study examined the hemodynamic activation patterns of the prefrontal and occipital cortices of 12 participants (5 male, Mage = 47.80, SDage = 17.79, range 25 to 74, and 7 female, Mage = 39.00, SDage = 18.18, range 21 to 65) passively viewing videos from three urban sites in Singapore (Urban Park, Neighborhood Landscape and City Center) at two different time points-T1, before the COVID-19 pandemic and T2, soon after the lockdown was over. (3) Results: We observed a significant and marginally significant decrease in average oxyhemoglobin (Oxy-Hb) over time for each of the visual conditions. For both green spaces (Urban Park and Neighborhood Landscape), the decrease was in the visual cortex, while for the City Center with no green elements, the marginal decrease was observed in the visual cortex and the frontal eye fields. (4) Conclusions: The results suggest that the COVID-19-related lockdown experienced by urban inhabitants may have contributed to decreased brain hemodynamics, which are further related to a heightened risk of mental health disorders, such as depression or a decline in cognitive functions. Moreover, the busy City Center scenes induced a hemodynamic pattern associated with stress and anxiety, while urban green spaces did not cause such an effect. Urban green scenes can be an important factor to offset the negative neuropsychological impact of busy urban environments post-pandemic.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Cities , Communicable Disease Control , Female , Hemodynamics , Humans , Male , Middle Aged , SARS-CoV-2 , Singapore/epidemiology
17.
Crit Care ; 25(1): 186, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1255959

ABSTRACT

BACKGROUND: In acute respiratory distress syndrome (ARDS), extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) measured by transpulmonary thermodilution reflect the degree of lung injury. Whether EVLWi and PVPI are different between non-COVID-19 ARDS and the ARDS due to COVID-19 has never been reported. We aimed at comparing EVLWi, PVPI, respiratory mechanics and hemodynamics in patients with COVID-19 ARDS vs. ARDS of other origin. METHODS: Between March and October 2020, in an observational study conducted in intensive care units from three university hospitals, 60 patients with COVID-19-related ARDS monitored by transpulmonary thermodilution were compared to the 60 consecutive non-COVID-19 ARDS admitted immediately before the COVID-19 outbreak between December 2018 and February 2020. RESULTS: Driving pressure was similar between patients with COVID-19 and non-COVID-19 ARDS, at baseline as well as during the study period. Compared to patients without COVID-19, those with COVID-19 exhibited higher EVLWi, both at the baseline (17 (14-21) vs. 15 (11-19) mL/kg, respectively, p = 0.03) and at the time of its maximal value (24 (18-27) vs. 21 (15-24) mL/kg, respectively, p = 0.01). Similar results were observed for PVPI. In COVID-19 patients, the worst ratio between arterial oxygen partial pressure over oxygen inspired fraction was lower (81 (70-109) vs. 100 (80-124) mmHg, respectively, p = 0.02) and prone positioning and extracorporeal membrane oxygenation (ECMO) were more frequently used than in patients without COVID-19. COVID-19 patients had lower maximal lactate level and maximal norepinephrine dose than patients without COVID-19. Day-60 mortality was similar between groups (57% vs. 65%, respectively, p = 0.45). The maximal value of EVLWi and PVPI remained independently associated with outcome in the whole cohort. CONCLUSION: Compared to ARDS patients without COVID-19, patients with COVID-19 had similar lung mechanics, but higher EVLWi and PVPI values from the beginning of the disease. This was associated with worse oxygenation and with more requirement of prone positioning and ECMO. This is compatible with the specific lung inflammation and severe diffuse alveolar damage related to COVID-19. By contrast, patients with COVID-19 had fewer hemodynamic derangement. Eventually, mortality was similar between groups. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: ClinicalTrials.gov (NCT04337983). Registered 30 March 2020-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04337983 .


Subject(s)
COVID-19/metabolism , Capillary Permeability , Extravascular Lung Water/metabolism , Respiratory Distress Syndrome/metabolism , Severity of Illness Index , COVID-19/complications , Hemodynamics , Humans , Lung/blood supply , Male , Middle Aged , Monitoring, Physiologic/methods , Prognosis , Pulmonary Edema/metabolism , Thermodilution
18.
Am J Cardiol ; 153: 135-139, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1242860

ABSTRACT

Patients with serious COVID infections develop shock frequently. To characterize the hemodynamic profile of this cohort, 156 patients with COVID pneumonia and shock requiring vasopressors had interpretable echocardiography with measurement of ejection fraction (EF) by Simpson's rule and stroke volume (SV) by Doppler. RV systolic pressure (RVSP) was estimated from the tricuspid regurgitation peak velocity. Patients were divided into groups with low or preserved EF (EFL or EFP, cutoff ≤45%), and low or normal cardiac index (CIL or CIN, cutoff ≤2.2 L/min/m2). Mean age was 67 ± 12.0, EF 59.5 ± 12.9, and CI 2.40 ± 0.86. A minority of patients had depressed EF (EFLCIL, n = 15, EFLCIN, n = 8); of those with preserved EF, less than half had low CI (EFPCIL, n = 55, EFPCIN, n = 73). Overall hospital mortality was 73%. Mortality was highest in the EFLCIL group (87%), but the difference between groups was not significant (p = 0.68 by ANOVA). High PEEP correlated with low CI in the EFPCIL group (r = 0.44, p = 0.04). In conclusion, this study reports the prevalence of shock characterized by EF and CI in patients with COVID-19. COVID-induced shock had a cardiogenic profile (EFLCIL) in 9.6% of patients, reflecting the impact of COVID-19 on myocardial function. Low CI despite preservation of EF and the correlation with PEEP suggests underfilling of the LV in this subset; these patients might benefit from additional volume. Hemodynamic assessment of COVID patients with shock with definition of subgroups may allow therapy to be tailored to the underlying causes of the hemodynamic abnormalities.


Subject(s)
COVID-19/epidemiology , Hemodynamics/physiology , Shock/physiopathology , Aged , Comorbidity , Echocardiography , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2 , Shock/diagnosis , Shock/epidemiology , United States/epidemiology
19.
ASAIO J ; 67(1): 12-17, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1228560

ABSTRACT

Coronavirus disease (COVID-19) is overwhelming hospitals with patients requiring respiratory support, including ventilators and Extracorporeal Membrane Oxygenation (ECMO). Bottlenecks in device availability may contribute to mortality, and limited device availability even in ECMO centers has led to rationing recommendations. Therefore, we explored options for ad hoc construction of venovenous ECMO using readily available components, essentially, large cannulas, membrane oxygenators, and blood pumps. As thousands of certified cardiac Impella pumps are distributed worldwide, we assembled lean ECMO by embedding Impella pumps coaxially in tubes, combined with standard gas exchangers. Ad hoc integration of Impella blood pumps with gas exchange modules, large-bore venous cannulas, regular ECMO tubing, Y-pieces, and connectors led to lean ECMO systems with stable performance over several days. Oxygenation of 2.5-5 L of blood per minute is realistic. Benefit/risk analysis appears favorable if a patient needs respiratory support but required support systems in a center are exhausted. Ad hoc assembly of venovenous ECMO is feasible using Impella blood pumps, results in stable blood flow across gas exchange modules, and thus may offer another opportunity to oxygenate, "recover the lungs" and hopefully save lives in selected patients with severe COVID-19 disease even when conventional life support equipment is exhausted. The lean design also yields inspirations for future ECMO systems.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Oxygenators, Membrane , Equipment Design , Hemodynamics , Humans , Oxygen , Risk
20.
Contemp Clin Trials ; 106: 106428, 2021 07.
Article in English | MEDLINE | ID: covidwho-1220744

ABSTRACT

Sedentary behavior (SB) has recently been recognized as a strong risk factor for cardiovascular disease, with new guidelines encouraging adults to 'sit less, move more.' Yet, there are few randomized trials demonstrating that reducing SB improves cardiovascular health. The Effect of Reducing Sedentary Behavior on Blood Pressure (RESET BP) randomized clinical trial addresses this gap by testing the effect of a 3-month SB reduction intervention on resting systolic BP. Secondary outcomes include other BP measures, pulse wave velocity, plasma renin activity and aldosterone, and objectively-measured SB (via thigh-mounted activPAL) and physical activity (via waist-worn GT3X accelerometer). RESET BP has a targeted recruitment of 300 adults with desk jobs, along with elevated, non-medicated BP (systolic BP 120-159 mmHg or diastolic BP 80-99 mmHg) and physical inactivity (self-reported aerobic physical activity below recommended levels). The multi-component intervention promotes 2-4 fewer hours of SB per day by replacing sitting with standing and light-intensity movement breaks. Participants assigned to the intervention condition receive a sit-stand desk attachment, a wrist-worn activity prompter, behavioral counseling every two weeks (alternating in-person and phone), and twice-weekly automated text messages. Herein, we review the study rationale, describe and evaluate recruitment strategies based on enrollment to date, and detail the intervention and assessment protocols. We also document our mid-trial adaptations to participant recruitment, intervention deployment, and outcome assessments due to the intervening COVID-19 pandemic. Our research methods, experiences to date, and COVID-specific accommodations could inform other research studying BP and hypertension or targeting working populations, including those seeking remote methods.


Subject(s)
Exercise/physiology , Hypertension/therapy , Sedentary Behavior , Workplace , Accelerometry , Adult , Aged , Aldosterone/blood , Blood Pressure , Blood Pressure Monitoring, Ambulatory , COVID-19/epidemiology , Female , Hemodynamics , Humans , Male , Middle Aged , Pandemics , Renin/blood , Research Design , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...