ABSTRACT
Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.
Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity RelationshipABSTRACT
Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.
Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Endotoxins/pharmacology , Peptide Fragments/pharmacology , Spike Glycoprotein, Coronavirus/pharmacology , Alphacoronavirus , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , CD13 Antigens/metabolism , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cricetulus , Endotoxins/toxicity , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Protein Conformation, alpha-Helical , Sheep, Domestic , Spike Glycoprotein, Coronavirus/toxicity , Structure-Activity RelationshipSubject(s)
Anemia, Hemolytic/etiology , COVID-19 Vaccines/adverse effects , COVID-19 , Complement Pathway, Alternative/drug effects , Hemoglobinuria, Paroxysmal/blood , Hemolysis/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adult , Anemia, Hemolytic/prevention & control , Antibodies, Monoclonal, Humanized/therapeutic use , Binding, Competitive , Clone Cells , Complement Factor D/antagonists & inhibitors , Complement Factor H/metabolism , Complement Inactivating Agents/therapeutic use , Erythrocytes/drug effects , Female , Hemoglobinuria, Paroxysmal/drug therapy , Heparitin Sulfate/metabolism , Humans , Male , Middle Aged , Protein Subunits , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/pharmacologySubject(s)
COVID-19/complications , COVID-19/drug therapy , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Hemolysis/drug effects , Humans , Hydroxychloroquine/administration & dosageABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) uses Angiotensin- converting enzyme 2 (ACE2) receptors to infect host cells which may lead to coronavirus disease (COVID-19). Given the presence of ACE2 receptors in the brain and the critical role of the renin-angiotensin system (RAS) in brain functions, special attention to brain microcirculation and neuronal inflammation is warranted during COVID-19 treatment. Neurological complications reported among COVID-19 patients range from mild dizziness, headache, hypogeusia, hyposmia to severe like encephalopathy, stroke, Guillain-Barre Syndrome (GBS), CNS demyelination, infarcts, microhemorrhages and nerve root enhancement. The pathophysiology of these complications is likely via direct viral infection of the CNS and PNS tissue or through indirect effects including post- viral autoimmune response, neurological consequences of sepsis, hyperpyrexia, hypoxia and hypercoagulability among critically ill COVID-19 patients. Further, decreased deformability of red blood cells (RBC) may be contributing to inflammatory conditions and hypoxia in COVID-19 patients. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may be used to maintain the integrity of the RBC membrane.
Subject(s)
Brain/physiopathology , COVID-19/physiopathology , Erythrocytes/pathology , Hemolysis , Nervous System Diseases/physiopathology , Brain/blood supply , COVID-19/complications , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Models, Neurological , Molecular Targeted Therapy/methods , Nervous System Diseases/complications , Nervous System Diseases/drug therapy , Pandemics , SARS-CoV-2Subject(s)
Antimalarials/therapeutic use , Chloroquine/therapeutic use , Glucosephosphate Dehydrogenase Deficiency/complications , Hemolysis/drug effects , Hydroxychloroquine/therapeutic use , Malaria/drug therapy , Antimalarials/adverse effects , COVID-19/drug therapy , Chloroquine/adverse effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Humans , Hydroxychloroquine/adverse effects , Malaria/complicationsSubject(s)
Betacoronavirus , Chloroquine/adverse effects , Coronavirus Infections/drug therapy , Glucosephosphate Dehydrogenase Deficiency/blood , Hemolysis/drug effects , Methemoglobinemia/chemically induced , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2Subject(s)
Betacoronavirus , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Hemoglobinuria, Paroxysmal/drug therapy , Inflammation/drug therapy , Pneumonia, Viral/drug therapy , Adult , COVID-19 , Complement Activation/drug effects , Complement Inactivating Agents/pharmacology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Female , Hemoglobinuria, Paroxysmal/complications , Hemoglobinuria, Paroxysmal/immunology , Hemolysis/drug effects , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS-CoV-2ABSTRACT
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an inherited genetic disorder caused by red cell enzymatic defects and is associated with haemolytic crisis when patients are exposed to oxidative agents (fava beans, drugs, infections). Hydroxychloroquine is suspected to trigger haemolytic crisis in G6PD-deficient patients, and off-label administration of this drug to patients infected with the novel coronavirus (SARS-CoV-2) could cause concern. We report here the first case of severe haemolytic crisis in a patient with G6PD deficiency, initiated by severe COVID-19 infection and hydroxychloroquine use. With worldwide spread of COVID-19, especially in regions with a high prevalence of G6PD deficiency, our case should alert physicians to this possible correlation.