Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Clin Immunol ; 238: 109027, 2022 05.
Article in English | MEDLINE | ID: covidwho-1814259

ABSTRACT

COVID-19 infection activates the immune system to cause autoimmune and autoinflammatory diseases. We provide a comprehensive review of the relationship between SARS-CoV-2, NOD2 and ubiquitination. COVID-19 infection partly results from host inborn errors and genetic factors and can lead to autoinflammatory disease. The interaction between defective NOD2 and viral infection may trigger NOD2-associated disease. SARS-CoV-2 can alter UBA1 and abnormal ubiquitination leading to VEXAS syndrome. Both NOD2 and ubiquitination play important roles in controlling inflammatory process. Receptor interacting protein kinase 2 is a key component of the NOD2 activation pathway and becomes ubiquitinated to recruit downstream effector proteins. NOD2 mutations result in loss of ubiquitin binding and increase ligand-stimulated NOD2 signaling. During viral infection, mutations of either NOD2 or UBA1 genes or in combination can facilitate autoinflammatory disease. COVID-19 infection can cause autoinflammatory disease. There are reciprocal interactions between SARS-CoV-2, NOD2 and ubiquitination.


Subject(s)
COVID-19 , Hereditary Autoinflammatory Diseases , Hereditary Autoinflammatory Diseases/genetics , Humans , Nod2 Signaling Adaptor Protein/genetics , SARS-CoV-2 , Ubiquitin/metabolism , Ubiquitination
3.
Pediatr Rheumatol Online J ; 19(1): 104, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1292002

ABSTRACT

BACKGROUND: H syndrome (HS) is a rare autoinflammatory disease caused by a mutation in the solute carrier family 29, member 3 (SCL29A3) gene. It has a variable clinical presentation and little phenotype-genotype correlation. The pathognomonic sign of HS is cutaneous hyperpigmentation located mainly in the inner thighs and often accompanied by other systemic manifestations. Improvement after tocilizumab treatment has been reported in a few patients with HS. We report the first patient with HS who presented cardiogenic shock, multiorgan infiltration, and digital ischemia. CASE PRESENTATION: 8-year-old boy born to consanguineous parents of Moroccan origin who was admitted to the intensive care unit during the Coronavirus Disease-2019 (COVID-19) pandemic with tachypnoea, tachycardia, and oliguria. Echocardiography showed dilated cardiomyopathy and severe systolic dysfunction compatible with cardiogenic shock. Additionally, he presented with multiple organ dysfunction syndrome. SARS-CoV-2 polymerase chain reaction (PCR) and antibody detection by chromatographic immunoassay were negative. A previously ordered gene panel for pre-existing sensorineural hearing loss showed a pathological mutation in the SCL29A3 gene compatible with H syndrome. Computed tomography scan revealed extensive alveolar infiltrates in the lungs and multiple poor defined hypodense lesions in liver, spleen, and kidneys; adenopathy; and cardiomegaly with left ventricle subendocardial nodules. Invasive mechanical ventilation, broad antibiotic and antifungal coverage showed no significant response. Therefore, Tocilizumab as compassionate use together with pulsed intravenous methylprednisolone was initiated. Improvement was impressive leading to normalization of inflammation markers, liver and kidney function, and stabilising heart function. Two weeks later, he was discharged and has been clinically well since then on two weekly administration of Tocilizumab. CONCLUSIONS: We report the most severe disease course produced by HS described so far in the literature. Our patient's manifestations included uncommon, new complications such as acute heart failure with severe systolic dysfunction, multi-organ cell infiltrate, and digital ischemia. Most of the clinical symptoms of our patient could have been explained by SARS-CoV-2, demonstrating the importance of a detailed differential diagnosis to ensure optimal treatment. Although the mechanism of autoinflammation of HS remains uncertain, the good response of our patient to Tocilizumab makes a case for the important role of IL-6 in this syndrome and for considering Tocilizumab as a first-line treatment, at least in severely affected patients.


Subject(s)
Cardiomyopathy, Dilated/physiopathology , Hereditary Autoinflammatory Diseases/physiopathology , Ischemia/physiopathology , Multiple Organ Failure/physiopathology , Shock, Cardiogenic/physiopathology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/therapy , Child , Glucocorticoids/therapeutic use , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/therapy , Humans , Ischemia/therapy , Kidney Diseases/diagnostic imaging , Kidney Diseases/physiopathology , Kidney Diseases/therapy , Liver Diseases/diagnostic imaging , Liver Diseases/physiopathology , Liver Diseases/therapy , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Lung Diseases/therapy , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/physiopathology , Lymphadenopathy/therapy , Male , Methylprednisolone/therapeutic use , Multiple Organ Failure/therapy , Nucleoside Transport Proteins/genetics , Pulse Therapy, Drug , Respiration, Artificial , SARS-CoV-2 , Shock, Cardiogenic/therapy , Splenic Diseases/diagnostic imaging , Splenic Diseases/physiopathology , Splenic Diseases/therapy , Toes/blood supply , Tomography, X-Ray Computed , Treatment Outcome
4.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-797268

ABSTRACT

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Subject(s)
Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Janus Kinase 1/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Adolescent , COVID-19/mortality , Catalytic Domain/genetics , Cell Line , Cytokines/metabolism , Female , Gain of Function Mutation/genetics , Genotype , HEK293 Cells , Hereditary Autoinflammatory Diseases/drug therapy , Humans , Janus Kinase 1/antagonists & inhibitors , Mosaicism , Piperidines/therapeutic use , Precision Medicine/methods , Pyrimidines/therapeutic use , Signal Transduction/immunology , Systemic Inflammatory Response Syndrome/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL