Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Behav Brain Res ; 417: 113630, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1466066

ABSTRACT

Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.


Subject(s)
Anxiety/etiology , COVID-19 , Feeding Behavior , Hippocampus/metabolism , Locomotion , Memory Disorders/etiology , Social Isolation , Age Factors , Animals , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor , COVID-19/prevention & control , Disease Models, Animal , Feeding Behavior/physiology , Housing, Animal , Hypothalamus/metabolism , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism
2.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463708

ABSTRACT

Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.


Subject(s)
Aggression , Hippocampus/metabolism , Inflammation/etiology , PPAR alpha/genetics , Social Isolation , Stress, Psychological , Aggression/psychology , Animals , Behavior, Animal , Chromatin Assembly and Disassembly , CpG Islands , Disease Models, Animal , Disease Susceptibility , Epigenesis, Genetic , Gene Expression , Inflammation/metabolism , Inflammation Mediators/metabolism , Male , Methylation , Mice , PPAR alpha/metabolism , Promoter Regions, Genetic , Signal Transduction
3.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237350

ABSTRACT

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Subject(s)
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
4.
Bull Exp Biol Med ; 170(5): 649-653, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1159147

ABSTRACT

Ivermectin (IVM) belongs to the class of macrocyclic lactones, which is used as an antiparasitic agent. At present, the researchers focus on possibility to use IVM in treatment of certain forms of cancer and viral diseases such as COVID-19. The mechanisms of IVM action are not clear. It is assumed that IVM affects chloride channels and increases cytoplasmic concentration of chloride. This study examines the effect of IVM on chloride currents induced by glycine (IGly). Experiments were carried out on isolated pyramidal neurons of the rat hippocampus with whole-cell patch clamp. A short-term (600 msec) application of IVM in a concentration of 10 µM induced a slow inward current, which persisted after washing the neurons. The low concentrations (0.1-1000 nM) of IVM did not induce any novel current, but it rapidly and reversibly reduced the peak amplitude and accelerated desensitization of IGly in a dose-dependent manner. The threshold concentrations of IVM sufficient to reduce peak amplitude of IGly and to accelerate desensitization of IGly were 100 nM and 0.1 nM, respectively. The study revealed a high sensitivity of neuronal glycine receptors to IVM.


Subject(s)
Chloride Channels/drug effects , Glycine/pharmacology , Ivermectin/pharmacology , Pyramidal Cells/drug effects , Action Potentials/drug effects , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chloride Channels/metabolism , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/metabolism , Ion Channel Gating/drug effects , Patch-Clamp Techniques , Pyramidal Cells/physiology , Rats , Rats, Wistar , Receptors, Glycine/drug effects , Receptors, Glycine/metabolism
5.
Int J Mol Sci ; 22(4)2021 Feb 08.
Article in English | MEDLINE | ID: covidwho-1069829

ABSTRACT

Alzheimer's disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer's disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer's disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer's disease. In summary, the present study reveals the relationships between Alzheimer's disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer's disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.


Subject(s)
Alzheimer Disease/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Hippocampus/metabolism , Pandemics , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Up-Regulation , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Autopsy , COVID-19/complications , COVID-19/virology , Hippocampus/pathology , Humans , Oxidation-Reduction , Oxidative Stress , Peroxiredoxin VI/metabolism , Plaque, Amyloid/metabolism , Protein Carbonylation , Severity of Illness Index , Virus Internalization
6.
Nat Neurosci ; 24(3): 368-378, 2021 03.
Article in English | MEDLINE | ID: covidwho-983666

ABSTRACT

It is unclear whether severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019, can enter the brain. Severe acute respiratory syndrome coronavirus 2 binds to cells via the S1 subunit of its spike protein. We show that intravenously injected radioiodinated S1 (I-S1) readily crossed the blood-brain barrier in male mice, was taken up by brain regions and entered the parenchymal brain space. I-S1 was also taken up by the lung, spleen, kidney and liver. Intranasally administered I-S1 also entered the brain, although at levels roughly ten times lower than after intravenous administration. APOE genotype and sex did not affect whole-brain I-S1 uptake but had variable effects on uptake by the olfactory bulb, liver, spleen and kidney. I-S1 uptake in the hippocampus and olfactory bulb was reduced by lipopolysaccharide-induced inflammation. Mechanistic studies indicated that I-S1 crosses the blood-brain barrier by adsorptive transcytosis and that murine angiotensin-converting enzyme 2 is involved in brain and lung uptake, but not in kidney, liver or spleen uptake.


Subject(s)
Blood-Brain Barrier/metabolism , Spike Glycoprotein, Coronavirus/pharmacokinetics , Administration, Intranasal , Administration, Intravenous , Angiotensin-Converting Enzyme 2/metabolism , Animals , Apolipoproteins E/genetics , COVID-19 , Genotype , Hippocampus/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Transgenic , Olfactory Bulb/metabolism , Sex Characteristics , Spike Glycoprotein, Coronavirus/administration & dosage , Tissue Distribution , Transcytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...