Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Biochem Biophys Res Commun ; 557: 273-279, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1174101


Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.

COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Histone Acetyltransferases/metabolism , SARS Virus/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , CREB-Binding Protein/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , SARS Virus/chemistry , SARS-CoV-2/chemistry
Mol Cell Endocrinol ; 515: 110917, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-661768


Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.

Adipocytes/drug effects , Fibronectins/pharmacology , Gene Expression Regulation/drug effects , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Coronavirus Infections/virology , Fibronectins/genetics , Fibronectins/metabolism , Furin/genetics , Furin/metabolism , Gene Ontology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Molecular Sequence Annotation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , /genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2 , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism