Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
J Biol Chem ; 299(3): 102990, 2023 03.
Article in English | MEDLINE | ID: covidwho-2235815


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.

COVID-19 , Interferon Type I , Animals , Humans , SARS-CoV-2 , Histone Deacetylases/genetics , Interferon Type I/pharmacology , Peptide Hydrolases , Mammals , Endoribonucleases , Trans-Activators
J Mol Biol ; 434(6): 167277, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-2061566


Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.

Flavivirus , Interferons , Virus Replication , Apolipoproteins L/genetics , Apolipoproteins L/metabolism , Flavivirus/physiology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2/physiology , Zika Virus/physiology
Rev Physiol Biochem Pharmacol ; 180: 1-47, 2021.
Article in English | MEDLINE | ID: covidwho-1396975


Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.

Histone Deacetylases , Monocytes , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Monocytes/metabolism