Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomolecules ; 11(12)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1581038

ABSTRACT

Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.


Subject(s)
Drug Discovery , Gasotransmitters/pharmacology , Hydrogen Sulfide/pharmacology , Animals , Benzenesulfonates/administration & dosage , Benzenesulfonates/metabolism , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Chemistry, Pharmaceutical , Gasotransmitters/administration & dosage , Gasotransmitters/metabolism , Gasotransmitters/therapeutic use , Humans , Hydrogen Sulfide/administration & dosage , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/therapeutic use , Morpholines/administration & dosage , Morpholines/metabolism , Morpholines/pharmacology , Morpholines/therapeutic use , Naproxen/administration & dosage , Naproxen/analogs & derivatives , Naproxen/metabolism , Naproxen/pharmacology , Naproxen/therapeutic use , Organothiophosphorus Compounds/administration & dosage , Organothiophosphorus Compounds/metabolism , Organothiophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/therapeutic use
2.
Science ; 372(6547): 1169-1175, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1583231

ABSTRACT

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms , Crystallography, X-Ray , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Drug Discovery , Drug Resistance, Bacterial , Drug Synergism , Drug Tolerance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
3.
Antioxid Redox Signal ; 35(14): 1207-1225, 2021 11 10.
Article in English | MEDLINE | ID: covidwho-1475726

ABSTRACT

Significance: Hydrogen sulfide (H2S) is one of the three main gasotransmitters that are endogenously produced in humans and are protective against oxidative stress. Recent findings from studies focusing on coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shifted our attention to a potentially modulatory role of H2S in this viral respiratory disease. Recent Advances: H2S levels at hospital admission may be of importance since this gasotransmitter has been shown to be protective against lung damage through its antiviral, antioxidant, and anti-inflammatory actions. Furthermore, many COVID-19 cases have been described demonstrating remarkable clinical improvement upon administration of high doses of N-acetylcysteine (NAC). NAC is a renowned pharmacological antioxidant substance acting as a source of cysteine, thereby promoting endogenous glutathione (GSH) biosynthesis as well as generation of sulfane sulfur species when desulfurated to H2S. Critical Issues: Combining H2S physiology and currently available knowledge of COVID-19, H2S is hypothesized to target three main vulnerabilities of SARS-CoV-2: (i) cell entry through interfering with functional host receptors, (ii) viral replication through acting on RNA-dependent RNA polymerase (RdRp), and (iii) the escalation of inflammation to a potentially lethal hyperinflammatory cytokine storm (toll-like receptor 4 [TLR4] pathway and NLR family pyrin domain containing 3 [NLRP3] inflammasome). Future Directions: Dissecting the breakdown of NAC reveals the possibility of increasing endogenous H2S levels, which may provide a convenient rationale for the application of H2S-targeted therapeutics. Further randomized-controlled trials are warranted to investigate its definitive role.


Subject(s)
Acetylcysteine/metabolism , COVID-19/metabolism , Hydrogen Sulfide/metabolism , Humans , Oxidation-Reduction
4.
Bratisl Lek Listy ; 122(10): 732-738, 2021.
Article in English | MEDLINE | ID: covidwho-1441311

ABSTRACT

BACKGROUND: The use of acetaminophen (APAP) is increasing recently, especially with COVID-19 outbreaks. APAP is safe at therapeutic levels, however, an overdose can cause severe liver injury. This study aims to explore possible mechanisms involved in APAP­induced hepatotoxicity and compare different hepatoprotective agents, namely vitamin E, hydrogen sulfide (H2S) and necrostatin-1 (NEC-1). METHODS: Adult male albino rats were divided into groups: Control group, APAP­induced hepatotoxicity group, Vitamin E­treated group, H2S­treated group and NEC-1­treated group. Serum levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin-33 (IL-33), tumor necrosis factor alpha (TNF-α), reduced glutathione (GSH) and lipid profile were measured. Histopathological examinations of liver tissue with H(et)E stain and immunohistochemistry for activated caspase-3 were also done. RESULTS: APAP­treated group showed elevated liver transaminases, hyperlipidemia, and deficient liver anti-oxidative response together with disturbed hepatic architecture and increased immune-expression of activated caspase-3 in hepatic tissue. Pretreatment with vitamin E, H2S or NEC-1 reversed the affected parameters. Vitamin E and H2S showed greater improvement when compared to NEC-1. CONCLUSION: Vitamin E, H2S and NEC-1 showed protective effects against APAP-induced hepatotoxicity, thus they may be used as an adjuvant therapy when APAP is indicated for long periods as is the case in COVID-19 patients (Tab. 2, Fig. 2, Ref. 45). Text in PDF www.elis.sk Keywords: acetaminophen, hepatotoxicity, apoptosis, necrostatin-1, vitamin E, H2S.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , Hydrogen Sulfide , Acetaminophen/toxicity , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Humans , Hydrogen Sulfide/metabolism , Imidazoles , Indoles , Liver/metabolism , Male , Oxidative Stress , Rats , SARS-CoV-2 , Vitamin E/pharmacology
5.
Br J Pharmacol ; 177(21): 4931-4941, 2020 11.
Article in English | MEDLINE | ID: covidwho-991238

ABSTRACT

The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Subject(s)
Coronavirus Infections/drug therapy , Hydrogen Sulfide/metabolism , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
6.
Am J Physiol Cell Physiol ; 319(2): C244-C249, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-889936

ABSTRACT

The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydrogen Sulfide/therapeutic use , Pneumonia, Viral/drug therapy , Virus Internalization/drug effects , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Humans , Hydrogen Sulfide/metabolism , Lung/drug effects , Lung/metabolism , Lung/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction
7.
Mol Med ; 26(1): 90, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-801066

ABSTRACT

Hydrogen sulfide (H2S) is a natural defence against the infections from enveloped RNA viruses and is likely involved also in Covid 19. It was already shown to inhibit growth and pathogenic mechanisms of a variety of enveloped RNA viruses and it was now found that circulating H2S is higher in Covid 19 survivors compared to fatal cases. H2S release is triggered by carbon monoxide (CO) from the catabolism of heme by inducible heme oxygenase (HO-1) and heme proteins possess catalytic activity necessary for the H2S signalling by protein persulfidation. Subjects with a long promoter for the HMOX1 gene, coding for HO-1, are predicted for lower efficiency of this mechanism. SARS-cov-2 exerts ability to attack the heme of hemoglobin and other heme-proteins thus hampering both release and signalling of H2S. Lack of H2S-induced persulfidation of the KATP channels of leucocytes causes adhesion and release of the inflammatory cytokines, lung infiltration and systemic endothelial damage with hyper-coagulability. These events largely explain the sex and age distribution, clinical manifestations and co-morbidities of Covid-19. The understanding of this mechanism may be of guidance in re-evaluating the ongoing therapeutic strategies, with special attention to the interaction with mechanical ventilation, paracetamol and chloroquine use, and in the individuation of genetic traits causing increased susceptibility to the disruption of these physiologic processes and to a critical Covid 19. Finally, an array of therapeutic interventions with the potential to clinically modulate the HO-1/CO/H2S axis is already available or under development. These include CO donors and H2S donors and a boost to the endogenous production of H2S is also possible.


Subject(s)
Coronavirus Infections/immunology , Hydrogen Sulfide/metabolism , Pneumonia, Viral/immunology , COVID-19 , Carbon Monoxide/metabolism , Coronavirus Infections/complications , Coronavirus Infections/metabolism , Coronavirus Infections/therapy , Genetic Predisposition to Disease , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , Pneumonia, Viral/therapy , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL