Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cancer Med ; 10(23): 8432-8450, 2021 12.
Article in English | MEDLINE | ID: covidwho-1469423

ABSTRACT

BACKGROUND AND AIMS: The existing evidence has indicated that hyperthermia ablation (HA) and HA combined with transarterial chemoembolization (HATACE) are the optimal alternative to surgical resection for patients with hepatocellular carcinoma (HCC) in the COVID-19 crisis. However, the evidence for decision-making is lacking in terms of comparison between HA and HATACE. Herein, a comprehensive evaluation was performed to compare the efficacy and safety of HATACE with monotherapy. MATERIALS AND METHODS: Worldwide studies were collected to evaluate the HATACE regimen for HCC due to the practical need for global extrapolation of applicative population. Meta-analyses were performed using the RevMan 5.3 software (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). RESULTS: Thirty-six studies involving a large sample of 5036 patients were included finally. Compared with HA alone, HATACE produced the advantage of 5-year overall survival (OS) rate (OR:1.90; 95%CI:1.46,2.46; p < 0.05) without increasing toxicity (p ≥ 0.05). Compared with TACE alone, HATACE was associated with superior 5-year OS rate (OR:3.54; 95%CI:1.96,6.37; p < 0.05) and significantly reduced the incidences of severe liver damage (OR:0.32; 95%CI:0.11,0.96; p < 0.05) and ascites (OR:0.42; 95%CI:0.20,0.88; p < 0.05). Subgroup analysis results of small (≤3 cm) HCC revealed that there were no significant differences between the HATACE group and HA monotherapy group in regard to the OS rates (p ≥ 0.05). CONCLUSIONS: Compared with TACE alone, HATACE was more effective and safe for HCC. Compared with HA alone, HATACE was more effective for non-small-sized (>3 cm) HCC with comparable safety. However, the survival benefit of adjuvant TACE in HATACE regimen was not found for the patients with small (≤3 cm) HCC.


Subject(s)
Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Hyperthermia, Induced/methods , Liver Neoplasms/therapy , COVID-19 , Carcinoma, Hepatocellular/mortality , Combined Modality Therapy , Humans , Liver Neoplasms/mortality , Randomized Controlled Trials as Topic , Treatment Outcome
2.
J Neuroimmunol ; 358: 577654, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1386080

ABSTRACT

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1ß, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.


Subject(s)
Ethanolamines/pharmacology , Hyperthermia, Induced/methods , Inflammation Mediators/metabolism , PPAR alpha/metabolism , Toll-Like Receptor 3/administration & dosage , Amidohydrolases/pharmacology , Animals , Female , Gene Expression , PPAR alpha/agonists , PPAR alpha/antagonists & inhibitors , Poly I-C/toxicity , Rats , Rats, Sprague-Dawley
3.
Chem Biol Interact ; 334: 109339, 2021 Jan 25.
Article in English | MEDLINE | ID: covidwho-970426

ABSTRACT

Clinical trials of thermoheliox application (inhalation with a high-temperature mixture of oxygen and helium, 90 °C) in the treatment of the acute phase of coronavirus infection were conducted. Dynamics of disease development in infected patients (PCR test for the virus) and, dynamics of changes in blood concentration of C-reactive protein, immunoglobulin M, specific immunoglobulin G were studied. High efficiency of thermoheliox in releasing the organism from the virus and stimulating the immune response (thermovaccination effect) was shown. The kinetic model of the process is proposed and analyzed.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Helium/administration & dosage , Hyperthermia, Induced/methods , Oxygen/administration & dosage , Administration, Inhalation , Adult , Aged , Antibodies, Viral/blood , C-Reactive Protein/biosynthesis , COVID-19/virology , Hot Temperature , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Middle Aged , Models, Immunological , SARS-CoV-2/immunology , Vaccination/methods
4.
Med Hypotheses ; 146: 110363, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-971848

ABSTRACT

COVID-19 is a new contagious disease caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a disease that has reached every continent in the world; it has overloaded the medical system worldwide and it has been declared a pandemic by the World Health Organization. Currently there is no definite treatment for COVID-19. We realize that host immunity is a critical factor in the outcome of coronavirus 2 infection. Here, however, we review the pathophysiology of the disease with a focus on searching for what we can do to combat this new disease. From this, we find that coronavirus is sensitive to heat. We have thus focused on this area of vulnerability of the virus. The emphasis of this hypothesis is on the action of body heat-internal (fever) and external (heat treatment)-in activating the immune system and its antiviral activities, and specifically related to the coronavirus. We hypothesize from this review that heat treatments has the potential to prevent COVID-19 and to decrease the severity of mild and moderate cases of Coronavirus. We propose heat treatments for this uncontrolled worldwide coronavirus pandemic while studies are being done to test the effectiveness of heat treatments in the prevention and treatment of COVID-19.


Subject(s)
COVID-19/prevention & control , COVID-19/therapy , Hydrotherapy/methods , Hyperthermia, Induced/methods , Models, Biological , Pandemics , SARS-CoV-2 , COVID-19/virology , Combined Modality Therapy , Host Microbial Interactions/physiology , Humans , Pandemics/prevention & control , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severity of Illness Index
5.
Diagn Interv Imaging ; 101(6): 347-353, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-108794

ABSTRACT

The COVID-19 pandemic has deeply impacted the activity of interventional oncology in hospitals and cancer centers. In this review based on official recommendations of different international societies, but also on local solutions found in different expert large-volume centers, we discuss the changes that need to be done for the organization, safety, and patient management in interventional oncology. A literature review of potential solutions in a context of scarce anesthesiologic resources, limited staff and limited access to hospital beds are proposed and discussed based on the literature data.


Subject(s)
Betacoronavirus , Cancer Care Facilities/organization & administration , Coronavirus Infections/epidemiology , Neoplasms/therapy , Pandemics , Pneumonia, Viral/epidemiology , Aerosols , Age Factors , Anesthesia, General , Anesthesiology/statistics & numerical data , Biopsy/adverse effects , Biopsy/methods , COVID-19 , COVID-19 Testing , Carcinoma, Hepatocellular/therapy , Carcinoma, Renal Cell/therapy , Chemoembolization, Therapeutic/methods , Clinical Laboratory Techniques/methods , Colonic Neoplasms/pathology , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Databases, Factual , Health Personnel/statistics & numerical data , Health Resources/organization & administration , Health Resources/supply & distribution , Hospital Bed Capacity/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Hyperthermia, Induced/methods , Kidney Neoplasms/therapy , Liver Neoplasms/therapy , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Neoplasms/complications , Palliative Care/methods , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , SARS-CoV-2 , Triage
SELECTION OF CITATIONS
SEARCH DETAIL