Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 11(1): 13533, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1387483

ABSTRACT

The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10-4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Crohn Disease/pathology , Adolescent , Adult , Angiotensin-Converting Enzyme 2/genetics , Crohn Disease/metabolism , Crohn Disease/surgery , Female , Humans , Ileum/metabolism , Ileum/pathology , Immunohistochemistry , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Male , Prognosis , Proportional Hazards Models , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Risk Factors , Sequence Analysis, RNA , Young Adult
3.
Brief Bioinform ; 22(2): 914-923, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343627

ABSTRACT

The novel coronavirus or COVID-19 has first been found in Wuhan, China, and became pandemic. Angiotensin-converting enzyme 2 (ACE2) plays a key role in the host cells as a receptor of Spike-I Glycoprotein of COVID-19 which causes final infection. ACE2 is highly expressed in the bladder, ileum, kidney and liver, comparing with ACE2 expression in the lung-specific pulmonary alveolar type II cells. In this study, the single-cell RNAseq data of the five tissues from different humans are curated and cell types with high expressions of ACE2 are identified. Subsequently, the protein-protein interaction networks have been established. From the network, potential biomarkers which can form functional hubs, are selected based on k-means network clustering. It is observed that angiotensin PPAR family proteins show important roles in the functional hubs. To understand the functions of the potential markers, corresponding pathways have been researched thoroughly through the pathway semantic networks. Subsequently, the pathways have been ranked according to their influence and dependency in the network using PageRank algorithm. The outcomes show some important facts in terms of infection. Firstly, renin-angiotensin system and PPAR signaling pathway can play a vital role for enhancing the infection after its intrusion through ACE2. Next, pathway networks consist of few basic metabolic and influential pathways, e.g. insulin resistance. This information corroborate the fact that diabetic patients are more vulnerable to COVID-19 infection. Interestingly, the key regulators of the aforementioned pathways are angiontensin and PPAR family proteins. Hence, angiotensin and PPAR family proteins can be considered as possible therapeutic targets. Contact: sagnik.sen2008@gmail.com, umaulik@cse.jdvu.ac.in Supplementary information: Supplementary data are available online.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/pathogenicity , Algorithms , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Humans , Ileum/metabolism , Ileum/pathology , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Peroxisome Proliferator-Activated Receptors/metabolism , Protein Interaction Maps , Renin-Angiotensin System/physiology , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology
5.
Science ; 369(6499): 50-54, 2020 07 03.
Article in English | MEDLINE | ID: covidwho-154670

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.


Subject(s)
Betacoronavirus/physiology , Enterocytes/virology , Ileum/virology , Virus Replication , Angiotensin-Converting Enzyme 2 , Betacoronavirus/ultrastructure , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cell Proliferation , Culture Media , Enterocytes/metabolism , Enterocytes/ultrastructure , Gene Expression , Humans , Ileum/metabolism , Ileum/ultrastructure , Lung/virology , Male , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/virology , SARS Virus/physiology , SARS-CoV-2
6.
Inflamm Bowel Dis ; 26(6): 797-808, 2020 05 12.
Article in English | MEDLINE | ID: covidwho-116826

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease (IBD) have intestinal inflammation and are treated with immune-modulating medications. In the face of the coronavirus disease-19 pandemic, we do not know whether patients with IBD will be more susceptible to infection or disease. We hypothesized that the viral entry molecules angiotensin I converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are expressed in the intestine. We further hypothesized that their expression could be affected by inflammation or medication usage. METHODS: We examined the expression of Ace2 and Tmprss2 by quantitative polymerase chain reacion in animal models of IBD. Publicly available data from organoids and mucosal biopsies from patients with IBD were examined for expression of ACE2 and TMPRSS2. We conducted RNA sequencing for CD11b-enriched cells and peripheral and lamina propria T-cells from well-annotated patient samples. RESULTS: ACE2 and TMPRSS2 were abundantly expressed in the ileum and colon and had high expression in intestinal epithelial cells. In animal models, inflammation led to downregulation of epithelial Ace2. Expression of ACE2 and TMPRSS2 was not increased in samples from patients with compared with those of control patients. In CD11b-enriched cells but not T-cells, the level of expression of ACE2 and TMPRSS2 in the mucosa was comparable to other functional mucosal genes and was not affected by inflammation. Anti-tumor necrosis factor drugs, vedolizumab, ustekinumab, and steroids were linked to significantly lower expression of ACE2 in CD11b-enriched cells. CONCLUSIONS: The viral entry molecules ACE2 and TMPRSS2 are expressed in the ileum and colon. Patients with IBD do not have higher expression during inflammation; medical therapy is associated with lower levels of ACE2. These data provide reassurance for patients with IBD.


Subject(s)
Gene Expression Regulation , Immunosuppressive Agents/pharmacology , Irritable Bowel Syndrome/physiopathology , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Biopsy , COVID-19 , Colon/drug effects , Colon/metabolism , Computational Biology , Coronavirus Infections/physiopathology , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Humans , Ileum/drug effects , Ileum/metabolism , Immunosuppressive Agents/therapeutic use , Inflammation/physiopathology , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/drug therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL