ABSTRACT
Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.
Subject(s)
COVID-19/drug therapy , Imatinib Mesylate/therapeutic use , Metabolic Diseases/drug therapy , Methazolamide/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate/pharmacology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/virology , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effectsABSTRACT
Immune dysregulation is an important component of the pathophysiology of COVID-19. A large body of literature has reported the effect of immune-based therapies in patients with COVID-19, with some remarkable successes such as the use of steroids or anti-cytokine therapies. However, challenges in clinical decision-making arise from the complexity of the disease phenotypes and patient heterogeneity, as well as the variable quality of evidence from immunotherapy studies. This Review aims to support clinical decision-making by providing an overview of the evidence generated by major clinical trials of host-directed therapy. We discuss patient stratification and propose an algorithm to guide the use of immunotherapy strategies in the clinic. This will not only help guide treatment decisions, but may also help to design future trials that investigate immunotherapy in other severe infections.
Subject(s)
Anticoagulants/therapeutic use , COVID-19/therapy , Complement Inactivating Agents/therapeutic use , Glucocorticoids/therapeutic use , Immunologic Factors/therapeutic use , Immunomodulation , Protein Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Azetidines/therapeutic use , Bradykinin/analogs & derivatives , Bradykinin/therapeutic use , Bradykinin B2 Receptor Antagonists/therapeutic use , COVID-19/immunology , Dexamethasone/therapeutic use , Drug Combinations , Factor Xa Inhibitors/therapeutic use , Heparin/therapeutic use , Humans , Hydrocortisone/therapeutic use , Imatinib Mesylate/therapeutic use , Immunization, Passive , Interferon beta-1a/therapeutic use , Interferon beta-1b/therapeutic use , Interferon-gamma/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Kallikrein-Kinin System , Piperidines/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2 , Sulfonamides/therapeutic useABSTRACT
Drug repurposing is an attractive option for identifying new treatment strategies, in particular in extraordinary situations of urgent need such as the current coronavirus disease 2019 (Covid-19) pandemic. Recently, the World Health Organization announced testing of three drugs as potential Covid-19 therapeutics that are known for their dampening effect on the immune system. Thus, the underlying concept of selecting these drugs is to temper the potentially life-threatening overshooting of the immune system reacting to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This viewpoint discusses the possibility that the impact of these and other drugs on autophagy contributes to their therapeutic effect by hampering the SARS-CoV-2 life cycle.
Subject(s)
Antiviral Agents/pharmacology , Artesunate/pharmacology , Autophagy/drug effects , COVID-19/drug therapy , Drug Repositioning , Imatinib Mesylate/pharmacology , Infliximab/pharmacology , Pandemics , SARS-CoV-2/drug effects , Antidepressive Agents/pharmacology , Antiviral Agents/therapeutic use , Artesunate/therapeutic use , Chloroquine/pharmacology , Drug Development , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/virology , Endosomes/drug effects , Endosomes/virology , Humans , Hydroxychloroquine/pharmacology , Imatinib Mesylate/therapeutic use , Infliximab/therapeutic use , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Intracellular Membranes/virology , Ivermectin/pharmacology , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Niclosamide/pharmacology , Niclosamide/therapeutic use , RNA, Viral/metabolism , SARS-CoV-2/physiology , Virus ReplicationABSTRACT
This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (Cmax ) and trough concentration (Ctrough ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectively, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19.
Subject(s)
Acute-Phase Proteins/metabolism , COVID-19/blood , COVID-19/drug therapy , Imatinib Mesylate/blood , Protein Kinase Inhibitors/blood , Aged , Aged, 80 and over , Female , Humans , Imatinib Mesylate/therapeutic use , Male , Middle Aged , Protein Binding/drug effects , Protein Binding/physiology , Protein Kinase Inhibitors/therapeutic useABSTRACT
BACKGROUND: Many recent studies have investigated the role of drug interventions for coronavirus disease 2019 (COVID-19) infection. However, an important question has been raised about how to select the effective and secure medications for COVID-19 patients. The aim of this analysis was to assess the efficacy and safety of the various medications available for severe and non-severe COVID-19 patients based on randomized placebo-controlled trials (RPCTs). METHODS: We did an updated network meta-analysis. We searched the databases from inception until July 31, 2021, with no language restrictions. We included RPCTs comparing 49 medications and placebo in the treatment of severe and non-severe patients (aged 18 years or older) with COVID-19 infection. We extracted data on the trial and patient characteristics, and the following primary outcomes: all-cause mortality, the ratios of virological cure, and treatment-emergent adverse events. Odds ratio (OR) and their 95% confidence interval (CI) were used as effect estimates. RESULTS: From 3,869 publications, we included 61 articles related to 73 RPCTs (57 in non-severe COVID-19 patients and 16 in severe COVID-19 patients), comprising 20,680 patients. The mean sample size was 160 (interquartile range 96-393) in this study. The median duration of follow-up drugs intervention was 28 days (interquartile range 21-30). For increase in virological cure, we only found that proxalutamide (OR 9.16, 95% CI 3.15-18.30), ivermectin (OR 6.33, 95% CI 1.22-32.86), and low dosage bamlanivimab (OR 5.29, 95% CI 1.12-24.99) seemed to be associated with non-severe COVID-19 patients when compared with placebo, in which proxalutamide seemed to be better than low dosage bamlanivimab (OR 5.69, 95% CI 2.43-17.65). For decrease in all-cause mortality, we found that proxalutamide (OR 0.13, 95% CI 0.09-0.19), imatinib (OR 0.49, 95% CI 0.25-0.96), and baricitinib (OR 0.58, 95% CI 0.42-0.82) seemed to be associated with non-severe COVID-19 patients; however, we only found that immunoglobulin gamma (OR 0.27, 95% CI 0.08-0.89) was related to severe COVID-19 patients when compared with placebo. For change in treatment-emergent adverse events, we only found that sotrovimab (OR 0.21, 95% CI 0.13-0.34) was associated with non-severe COVID-19 patients; however, we did not find any medications that presented a statistical difference when compared with placebo among severe COVID-19 patients. CONCLUSION: We conclude that marked variations exist in the efficacy and safety of medications between severe and non-severe patients with COVID-19. It seems that monoclonal antibodies (e.g., low dosage bamlanivimab, baricitinib, imatinib, and sotrovimab) are a better choice for treating severe or non-severe COVID-19 patients. Clinical decisions to use preferentially medications should carefully consider the risk-benefit profile based on efficacy and safety of all active interventions in patients with COVID-19 at different levels of infection.
Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/drug therapy , Immunologic Factors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines/therapeutic use , COVID-19/mortality , Humans , Imatinib Mesylate/therapeutic use , Network Meta-Analysis , Oxazoles/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Sulfonamides/therapeutic use , Thiohydantoins/therapeutic use , Treatment OutcomeSubject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Imatinib Mesylate/therapeutic use , Lung/drug effects , Pneumonia, Viral/drug therapy , Protein Kinase Inhibitors/therapeutic use , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Combinations , Female , Humans , Hydroxychloroquine/administration & dosage , Lopinavir/administration & dosage , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Ritonavir/administration & dosage , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment OutcomeSubject(s)
COVID-19/drug therapy , Drug Repositioning , Hematologic Neoplasms/drug therapy , Adenine/analogs & derivatives , Adenine/therapeutic use , Aniline Compounds/therapeutic use , Humans , Imatinib Mesylate/therapeutic use , Janus Kinases/antagonists & inhibitors , Nitriles/therapeutic use , Oligopeptides/therapeutic use , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Quinolines/therapeutic useSubject(s)
COVID-19 , Amides , Humans , Imatinib Mesylate/therapeutic use , Pyrazines , SARS-CoV-2 , Treatment OutcomeABSTRACT
OBJECTIVES: To assess the efficacy of several repurposed drugs to prevent hospitalisation or death in patients aged 65 or more with recent symptomatic SARS-CoV-2 infection (COVID-19) and no criteria for hospitalisation. TRIAL DESIGN: Phase III, multi-arm (5) and multi-stage (MAMS), randomized, open-label controlled superiority trial. Participants will be randomly allocated 1:1:1:1:1 to the following strategies: Arm 1: Control arm Arms 2 to 5: Experimental treatment arms Planned interim analyses will be conducted at regular intervals. Their results will be reviewed by an Independent Data and Safety Monitoring Board. Experimental arms may be terminated for futility, efficacy or toxicity before the end of the trial. New experimental arms may be added if new evidence suggests that other treatments should be tested. A feasibility and acceptability substudy as well as an immunological substudy will be conducted alongside the trial. PARTICIPANTS: Inclusion criteria are: 65-year-old or more; Positive test for SARS-CoV-2 on a nasopharyngeal swab; Symptoms onset within 3 days before diagnosis; No hospitalisation criteria; Signed informed consent; Health insurance. Exclusion criteria are: Inability to make an informed decision to participate (e.g.: dementia, guardianship); Rockwood Clinical Frailty Scale ≥7; Long QT syndrome; QTc interval > 500 ms; Heart rate <50/min; Kalaemia >5.5 mmol/L or <3.5 mmol/L; Ongoing treatment with piperaquine, halofantrine, dasatinib, nilotinib, hydroxyzine, domperidone, citalopram, escitalopram, potent inhibitors or inducers of cytochrome P450 CYP3A4 isoenzyme, repaglinide, azathioprine, 6-mercaptopurine, theophylline, pyrazinamide, warfarin; Known hypersensitivity to any of the trial drugs or to chloroquine and other 4-aminoquinolines, amodiaquine, mefloquine, glafenine, floctafenine, antrafenine, ARB; Hepatic porphyria; Liver failure (Child-Pugh stage ≥B); Stage 4 or 5 chronic kidney disease (GFR <30 mL/min/1.73 m²); Dialysis; Hypersentivity to lactose; Lactase deficiency; Abnormalities in galactose metabolism; Malabsorption syndrome; Glucose-6-phosphate dehydrogenase deficiency; Symptomatic hyperuricemia; Ileus; Colitis; Enterocolitis; Chronic hepatitis B virus disease. The trial is being conducted in France in the Bordeaux, Corse, Dijon, Nancy, Paris and Toulouse areas as well as in the Grand Duchy of Luxembourg. Participants are recruited either at home, nursing homes, general practices, primary care centres or hospital outpatient consultations. INTERVENTION AND COMPARATOR: The four experimental treatments planned in protocol version 1.2 (April 8th, 2020) are: (1) Hydroxychloroquine 200 mg, 2 tablets BID on day 0, 2 tablets QD from day 1 to 9; (2) Imatinib 400 mg, 1 tablet QD from day 0 to 9; (3) Favipiravir 200 mg, 12 tablets BID on day 0, 6 tablets BID from day 1 to 9; (4) Telmisartan 20 mg, 1 tablet QD from day 0 to 9. The comparator is a complex of vitamins and trace elements (AZINC Forme et Vitalité®), 1 capsule BID for 10 days, for which there is no reason to believe that they are active on the virus. In protocol version 1.2 (April 8th, 2020): People in the control arm will receive a combination of vitamins and trace elements; people in the experimental arms will receive hydroxychloroquine, or favipiravir, or imatinib, or telmisartan. MAIN OUTCOME: The primary outcome is the proportion of participants with an incidence of hospitalisation and/or death between inclusion and day 14 in each arm. RANDOMISATION: Participants are randomized in a 1:1:1:1:1 ratio to each arm using a web-based randomisation tool. Participants not treated with an ARB or ACEI prior to enrolment are randomized to receive the comparator or one of the four experimental drugs. Participants already treated with an ARB or ACEI are randomized to receive the comparator or one of the experimental drugs except telmisartan (i.e.: hydroxychloroquine, imatinib, or favipiravir). Randomisation is stratified on ACEI or ARBs treatment at inclusion and on the type of residence (personal home vs. nursing home). BLINDING (MASKING): This is an open-label trial. Participants, caregivers, investigators and statisticians are not blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 1057 participants will be enrolled if all arms are maintained until the final analysis and no additional arm is added. Three successive futility interim analyses are planned, when the number of participants reaches 30, 60 and 102 in the control arm. Two efficacy analyses (interim n°3 and final) will be performed successively. TRIAL STATUS: This describes the Version 1.2 (April 8th, 2020) of the COVERAGE protocol that was approved by the French regulatory authority and ethics committee. The trial was opened for enrolment on April 15th, 2020 in the Nouvelle Aquitaine region (South-West France). Given the current decline of the COVID-19 pandemic in France and its unforeseeable dynamic in the coming months, new trial sites in 5 other French regions and in Luxembourg are currently being opened. A revised version of the protocol was submitted to the regulatory authority and ethics committee on June 15th, 2020. It contains the following amendments: (i) Inclusion criteria: age ≥65 replaced by age ≥60; time since first symptoms <3 days replaced by time since first symptoms <5 days; (ii) Withdrawal of the hydroxychloroquine arm (due to external data); (iii) increase in the number of trial sites. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on April 22nd, 2020 (Identifier: NCT04356495): and on EudraCT on April 10th, 2020 (Identifier: 2020-001435-27). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).
Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/drug therapy , Outpatients/statistics & numerical data , Pneumonia, Viral/drug therapy , Therapies, Investigational/statistics & numerical data , Aged , Aged, 80 and over , Amides/therapeutic use , Antihypertensive Agents/therapeutic use , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Tolerance , Feasibility Studies , France/epidemiology , Hospitalization/trends , Humans , Hydroxychloroquine/therapeutic use , Imatinib Mesylate/therapeutic use , Luxembourg/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Risk Reduction Behavior , SARS-CoV-2 , Telmisartan/therapeutic use , Treatment OutcomeABSTRACT
The coronavirus disease-2019 (COVID-19) pandemic is deeply impacting the accessibility of cancer patients to surgery. In resource-limited conditions, the standard of care might not be deliverable, but evidence to support alternative management strategies often exists. By revisiting available treatment options, this review provides surgical oncologists with an evidence-based framework for treating patients with gastrointestinal stromal tumor, extremity/truncal soft tissue sarcoma, and retroperitoneal sarcoma to rapidly adapt their decision-making to the constant evolution of the COVID-19 pandemic.
Subject(s)
COVID-19/epidemiology , Gastrointestinal Stromal Tumors/surgery , Practice Guidelines as Topic , SARS-CoV-2 , Soft Tissue Neoplasms/surgery , Gastrointestinal Stromal Tumors/drug therapy , Health Resources , Humans , Imatinib Mesylate/therapeutic use , Oncologists , Soft Tissue Neoplasms/drug therapy , Surgical OncologySubject(s)
COVID-19/diagnosis , Leukemia, Myeloid, Chronic-Phase/complications , Leukemia, Myeloid, Chronic-Phase/drug therapy , Patient Care Management/methods , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Imatinib Mesylate/administration & dosage , Imatinib Mesylate/therapeutic use , Leukemia, Myeloid, Chronic-Phase/diagnosis , Male , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Surveys and Questionnaires , Treatment Outcome , Turkey/epidemiologyABSTRACT
OBJECTIVE: There have been significant changes to the management of COVID-19 in recent months, including protocols and guidelines designed to prevent, diagnose, and treat the Novel Coronavirus (COVID-19). Several management options have been suggested and have since gained popularity, though we expect additional modifications to be made, as well as more new cases in the coming months, given a lack of definitive treatment and well-controlled experiments. This review highlights the available and potential treatments, along with the challenges associated with each. MATERIALS AND METHODS: We conducted a comprehensive overview of all peer-reviewed studies, editorial comments, and letters to the editor based on a search in PubMed, Google Scholar, Web of Science, and Scopus. The following terms were used: "COVID-19," "SARS-CoV-2," "drug," "treatment," "medication," and "management." All searches were done between March and May 20, 2020. RESULTS: There are several potential medications available for COVID-19, such as Interferon α (IFN-α), Teicoplanin, Ribavirin, Galidesivir, Lopinavir/Ritonavir, Chloroquine phosphate, Arbidol, Velpatasvir, Favipiravir, Ledipasvir, Remdesivir, Sofosbuvir, Darunavir, Qingfei Paidu Decoction (QPD), and Imatinib. However, we do not have a definitive and specific treatment yet. CONCLUSIONS: We are expecting to have more cases in the coming weeks/months. Therefore, further research is needed to characterize the disease behavior, to find the absolute drug, and to refine the treatment.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Betacoronavirus/isolation & purification , COVID-19 , Chloroquine/analogs & derivatives , Chloroquine/therapeutic use , Coronavirus Infections/virology , Humans , Imatinib Mesylate/therapeutic use , Lopinavir/therapeutic use , Pandemics , Pneumonia, Viral/virology , Ritonavir/therapeutic use , SARS-CoV-2Subject(s)
Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , COVID-19 , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Pandemics , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Drug Interactions , Humans , Imatinib Mesylate/adverse effects , Imatinib Mesylate/therapeutic useABSTRACT
We studied by questionnaire 530 subjects with chronic myeloid leukaemia (CML) in Hubei Province during the recent SARS-CoV-2 epidemic. Five developed confirmed (N = 4) or probable COVID-19 (N = 1). Prevalence of COVID-19 in our subjects, 0.9% (95% Confidence Interval, 0.1, 1.8%) was ninefold higher than 0.1% (0, 0.12%) reported in normals but lower than 10% (6, 17%) reported in hospitalised persons with other haematological cancers or normal health-care providers, 7% (4, 12%). Co-variates associated with an increased risk of developing COVID-19 amongst persons with CML were exposure to someone infected with SARS-CoV-2 (P = 0.037), no complete haematologic response (P = 0.003) and co-morbidity(ies) (P = 0.024). There was also an increased risk of developing COVID-19 in subjects in advanced phase CML (P = 0.004) even when they achieved a complete cytogenetic response or major molecular response at the time of exposure to SARS-CoV-2. 1 of 21 subjects receiving 3rd generation tyrosine kinase-inhibitor (TKI) developed COVID-19 versus 3 of 346 subjects receiving imatinib versus 0 of 162 subjects receiving 2nd generation TKIs (P = 0.096). Other co-variates such as age and TKI-therapy duration were not significantly associated with an increased risk of developing COVID-19. Persons with these risk factors may benefit from increased surveillance of SARS-CoV-2 infection and possible protective isolation.