Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Int J Environ Res Public Health ; 19(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957322

ABSTRACT

This paper aims to summarize the publishing trends, current status, research topics, and frontier evolution trends of health technology between 1990 and 2020 through various bibliometric analysis methods. In total, 6663 articles retrieved from the Web of Science core database were analyzed by Vosviewer and CiteSpace software. This paper found that: (1) The number of publications in the field of health technology increased exponentially; (2) there is no stable core group of authors in this research field, and the influence of the publishing institutions and journals in China is insufficient compared with those in Europe and the United States; (3) there are 21 core research topics in the field of health technology research, and these research topics can be divided into four classes: hot spots, potential hot spots, margin topics, and mature topics. C21 (COVID-19 prevention) and C10 (digital health technology) are currently two emerging research topics. (4) The number of research frontiers has increased in the past five years (2016-2020), and the research directions have become more diverse; rehabilitation, pregnancy, e-health, m-health, machine learning, and patient engagement are the six latest research frontiers.


Subject(s)
COVID-19 , Publications , Bibliometrics , Biomedical Technology , COVID-19/epidemiology , Humans , Imidazoles , Sulfonamides , Thiophenes , United States
2.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1957234

ABSTRACT

ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease. Celiac disease is an autoimmune-mediated chronic inflammatory condition of the small intestine affecting about 1-2% of people in Caucasian populations. The autoimmune disease is triggered by dietary gluten. Consumption of staple foods containing wheat, barley, or rye leads to destruction of the small intestinal mucosa in genetically susceptible individuals, and this is accompanied by the generation of characteristic TG2 autoantibodies. TG2 plays a causative role in the pathogenesis of celiac disease. Upon activation by Ca2+, it catalyzes the deamidation of gliadin peptides as well as the crosslinking of gliadin peptides to TG2 itself. These modified biological structures trigger breaking of oral tolerance to gluten, self-tolerance to TG2, and the activation of cytotoxic immune cells in the gut mucosa. Recently, in an exploratory proof-of-concept study, ZED1227 administration clinically validated TG2 as a "druggable" target in celiac disease. Here, we describe the specific features and profiling data of the drug candidate ZED1227. Further, we give an outlook on TG2 inhibition as a therapeutic approach in indications beyond celiac disease.


Subject(s)
Celiac Disease , Celiac Disease/drug therapy , GTP-Binding Proteins/metabolism , Gliadin/chemistry , Glutens/chemistry , Humans , Imidazoles , Peptides/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines , Transglutaminases/metabolism
3.
PLoS Pathog ; 18(6): e1010547, 2022 06.
Article in English | MEDLINE | ID: covidwho-1910700

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million people and costing millions of lives. Therapies to attenuate severe disease are desperately needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other investigational agents in patients with COVID-19 are currently ongoing. These trials intend to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of COVID-19 and prevent complications. This article reviews the literature surrounding the CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC to improve outcomes.


Subject(s)
CCR5 Receptor Antagonists , COVID-19 , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , COVID-19/drug therapy , Humans , Imidazoles , Receptors, CCR2 , Receptors, CCR5 , SARS-CoV-2 , Sulfoxides
4.
Biomaterials ; 286: 121570, 2022 07.
Article in English | MEDLINE | ID: covidwho-1821147

ABSTRACT

The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19/prevention & control , Imidazoles , Immunization , Lipids , Liposomes , Mice , Primates/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
Medicina (Kaunas) ; 58(4)2022 Apr 03.
Article in English | MEDLINE | ID: covidwho-1810018

ABSTRACT

Dabrafenib and trametinib are two available molecules that have been approved for the treatment of metastatic melanoma with BRAF-V600E or V600K mutations. Their combined therapy has led to long-lasting survival benefits and substantially improved outcomes. Until now, only a few cases of severe hypersensitivity reactions to dabrafenib and vemurafenib have been reported, and even fewer desensitization protocols to these molecules have been documented. We report the case of a 71-year-old female patient with metastatic melanoma harboring a BRAF-V600E mutation undergoing targeted therapy with dabrafenib and trametinib. Two weeks after the initiation of the combined treatment, she developed a hypersensitivity reaction. The cause-effect relationship between dabrafenib and the hypersensitivity reaction was demonstrated twice, when symptoms recurred upon dabrafenib reintroduction. We started a rapid 3-day dabrafenib desensitization protocol, which was well tolerated. When the patient discontinued the drug administration, we decided on a longer protocol that included more steps and more days in order to prevent the occurrence of other hypersensitivity reactions. Our patient tolerated both rapid and slow-going schedules, the first one reaching the final dose within 3 days and the second one reaching the total daily dose within 14 days. Depending on the patient's needs, the severity of the hypersensitivity reaction and the hospital's availability, the doctor may choose either the rapid or slow-going desensitization protocol.


Subject(s)
Melanoma , Neoplasms, Second Primary , Skin Neoplasms , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Humans , Imidazoles , Melanoma/drug therapy , Melanoma/genetics , Mutation , Neoplasm Recurrence, Local/drug therapy , Neoplasms, Second Primary/etiology , Oximes , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology
6.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1807487

ABSTRACT

During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the-possibly altered-response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19.We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , Azetidines , COVID-19/drug therapy , Cytokines/metabolism , Humans , Imidazoles , Indazoles , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Piperidines , SARS-CoV-2
8.
J Neuroinflammation ; 19(1): 8, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613238

ABSTRACT

BACKGROUND: The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS: CD-1 mice received an intraperitoneal injection of R848 (200 µg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 µL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS: R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS: Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.


Subject(s)
Benzamidines , Guanidines , Inflammation/drug therapy , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors , Toll-Like Receptor 7/immunology , Virus Diseases/drug therapy , Animals , Benzamidines/pharmacology , Benzamidines/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Guanidines/pharmacology , Guanidines/therapeutic use , Illness Behavior/drug effects , Imidazoles/administration & dosage , Imidazoles/immunology , Inflammation/metabolism , Inflammation/virology , Male , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Toll-Like Receptor 7/agonists , Virus Diseases/metabolism , Virus Diseases/virology
9.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1572567

ABSTRACT

COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus-host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.


Subject(s)
COVID-19/drug therapy , Cell Death/drug effects , Drug Discovery/methods , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Apoptosis/drug effects , Furans/pharmacology , Humans , Hydroxychloroquine/pharmacology , Imidazoles/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Necroptosis/drug effects , Phytochemicals/pharmacology , Pyroptosis/drug effects , SARS-CoV-2/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Viral Proteins/antagonists & inhibitors
10.
Sci Rep ; 11(1): 23741, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1565734

ABSTRACT

The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-ß, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.


Subject(s)
Imidazoles/immunology , Immunity, Innate , Oligodeoxyribonucleotides/immunology , Picornaviridae Infections/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Rhinovirus/immunology , Adolescent , Cohort Studies , Female , Humans , Interferons/immunology , Interferons/metabolism , Leukocytes, Mononuclear/immunology , Male , Picornaviridae Infections/mortality , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/mortality , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , SARS-CoV-2 , Sex Factors
11.
Sci Rep ; 11(1): 23670, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1560986

ABSTRACT

Among cases of SARS-CoV-2 infections that result in serious conditions or death, many have pre-existing conditions such as hypertension and are on renin-angiotensin-aldosterone system (RAAS) inhibitors. The angiotensin-converting-enzyme-2 (ACE2), a key protein of the RAAS pathway, also mediates cellular entry of SARS-CoV-2. RAAS inhibitors might affect the expression levels of ace2, which could impact patient susceptibility to SARS-CoV-2. However, multi-organ-specific information is currently lacking and no species other than rodents have been examined. To address this knowledge gap, we treated adult zebrafish with the RAAS inhibitors aliskiren, olmesartan, and captopril for 7 consecutive days and performed qRT-PCR analysis of major RAAS pathway genes in the brain, gill, heart, intestine, kidney, and liver. Both olmesartan and captopril significantly increased ace2 expression in the heart, gill, and kidney. Olmesartan also increased ace2 expression in the intestine. Conversely, aliskiren significantly decreased ace2 expression in the heart. Discontinuation of compound treatments for 7 days did not return ace2 expression to baseline levels. While potential risks or benefits of antihypertensive RAAS inhibitors to SARS-CoV-2 infections in humans remain uncertain, this study provides new insights regarding the impact of RAAS inhibitors on organ-specific ace2 expression in another vertebrate model, thereby providing comparative data and laying scientific groundwork for future clinical decisions of RAAS inhibitor use in the context of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Down-Regulation/drug effects , Up-Regulation/drug effects , Zebrafish/metabolism , Amides/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Animals , Brain/drug effects , Brain/metabolism , COVID-19/pathology , COVID-19/virology , Fumarates/pharmacology , Gills/drug effects , Gills/metabolism , Humans , Imidazoles/pharmacology , Liver/drug effects , Liver/metabolism , Models, Animal , SARS-CoV-2/isolation & purification , Tetrazoles/pharmacology
12.
Sci Rep ; 11(1): 23315, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550334

ABSTRACT

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/metabolism , Drug Development/methods , Drug Repositioning/methods , Benzamides/pharmacology , COVID-19/drug therapy , Cell Line , Computer Simulation , Coronavirus/chemistry , Databases, Pharmaceutical , Drug Discovery/methods , Host-Pathogen Interactions , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Triazines/pharmacology
13.
J Antimicrob Chemother ; 77(3): 758-766, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1545994

ABSTRACT

BACKGROUND: The combination of sofosbuvir and daclatasvir has shown preliminary efficacy for hospitalized patients with COVID-19 in four open-label studies with small sample sizes. This larger trial aimed to assess if the addition of sofosbuvir/daclatasvir to standard care improved clinical outcomes in hospitalized patients with COVID-19. METHODS: This was a placebo-controlled, double-blind, randomized clinical trial in adults hospitalized with COVID-19 at 19 hospitals in Iran. Patients were randomized to oral sofosbuvir/daclatasvir 400/60 mg once-daily or placebo in addition to standard of care. Patients were included if they had positive PCR or diagnostic chest CT, O2 saturation <95% and compatible symptoms. The primary outcome was hospital discharge within 10 days of randomization. Secondary outcomes included mortality and time to clinical events. The trial is registered on the Iran Registry of Clinical Trials under IRCT20200624047908N1. RESULTS: Between July and October 2020, 1083 patients were randomized to either the sofosbuvir/daclatasvir arm (n = 541) or the placebo arm (n = 542). No significant difference was observed in the primary outcome of hospital discharge within 10 days, which was achieved by 415/541 (77%) in the sofosbuvir/daclatasvir arm and 411/542 (76%) in the placebo arm [risk ratio (RR) 1.01, 95% CI 0.95-1.08, P = 0.734]. In-hospital mortality was 60/541 (11%) in the sofosbuvir/daclatasvir arm versus 55/542 (10%) in the placebo arm (RR 1.09, 95% CI 0.77-1.54, P = 0.615). No differences were observed in time to hospital discharge or time to in-hospital mortality. CONCLUSIONS: We observed no significant effect of sofosbuvir/daclatasvir versus placebo on hospital discharge or survival in hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Sofosbuvir , Adult , Antiviral Agents/therapeutic use , Carbamates , Humans , Imidazoles , Pyrrolidines , SARS-CoV-2 , Sofosbuvir/therapeutic use , Treatment Outcome , Valine/analogs & derivatives
14.
J Med Virol ; 93(12): 6750-6759, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544329

ABSTRACT

Only a few treatments are approved for coronavirus disease-2019 (COVID-19) infections, with continuous debate about their clinical impact. Repurposing antiviral treatments might prove the fastest way to identify effective therapy. This trial aimed to evaluate the efficacy and safety of sofosbuvir (SOF) plus daclatasvir (DCV) or ravidasvir (RDV) added to standard care (SOC) for patients with moderate and severe COVID-19 infection. Multicentre parallel randomized controlled open-label trial. One hundred and twenty eligible patients with moderate and severe COVID-19 infection were randomized to one of the study arms. Ten days of treatment with SOF plus DCV or RDV in addition to the standard of care compared to SOC. Follow up in 7 days. Sum of the counted symptoms at 7 and 10 days, mean change in oxygen saturation level, viral negativity, and rate of intensive care unit (ICU) admission. Compared to SOC, the SOF-DCV group experienced a significantly lower sum of the counted symptoms (fever, headache, generalized aches, or respiratory distress) combined with no evidence of deterioration (ICU admission and mechanical ventilation) on Days 7 and 10 of treatment. Oxygen saturation also significantly improved among the SOF-DCV group compared to SOC starting from Day 4. The study also showed positive trends regarding the efficacy of SOF-DCV with a lower incidence of mortality. On the other hand, adding SOF-RDV to SOC did not show significant improvements in endpoints. The results support the efficacy and safety of SOF-DCV as an add-on to SOC for the treatment of moderate to severe COVID-19 infections.


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , COVID-19/drug therapy , Carbamates/therapeutic use , Imidazoles/therapeutic use , Pyrrolidines/therapeutic use , Sofosbuvir/therapeutic use , Valine/analogs & derivatives , Adult , Drug Therapy, Combination/methods , Female , Genotype , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Treatment Outcome , Valine/therapeutic use
15.
Clin Transl Sci ; 14(6): 2556-2565, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526359

ABSTRACT

Nezulcitinib (TD-0903), a lung-selective pan-Janus-associated kinase (JAK) inhibitor designed for inhaled delivery, is under development for treatment of acute lung injury associated with coronavirus disease 2019 (COVID-19). This two-part, double-blind, randomized, placebo-controlled, single ascending dose (part A) and multiple ascending dose (part B) phase I study evaluated the safety, tolerability, and pharmacokinetics (PK) of nezulcitinib in healthy participants. Part A included three cohorts randomized 6:2 to receive a single inhaled dose of nezulcitinib (1, 3, or 10 mg) or matching placebo. Part B included three cohorts randomized 8:2 to receive inhaled nezulcitinib (1, 3, or 10 mg) or matching placebo for 7 days. The primary outcome was nezulcitinib safety and tolerability assessed from treatment-emergent adverse events (TEAEs). The secondary outcome was nezulcitinib PK. All participants completed the study. All TEAEs were mild or moderate in severity, and none led to treatment discontinuation. Overall (area under the plasma concentration-time curve) and peak (maximal plasma concentration) plasma exposures of nezulcitinib were low and increased in a dose-proportional manner from 1 to 10 mg in both parts, with no suggestion of clinically meaningful drug accumulation. Maximal plasma exposures were below levels expected to result in systemic target engagement, consistent with a lung-selective profile. No reductions in natural killer cell counts were observed, consistent with the lack of a systemic pharmacological effect and the observed PK. In summary, single and multiple doses of inhaled nezulcitinib at 1, 3, and 10 mg were well-tolerated in healthy participants, with dose-proportional PK supporting once-daily administration.


Subject(s)
Azetidines/adverse effects , COVID-19/drug therapy , Imidazoles/adverse effects , Indazoles/adverse effects , Piperidines/adverse effects , Administration, Inhalation , Adult , Area Under Curve , Azetidines/administration & dosage , Azetidines/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Healthy Volunteers , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacokinetics , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Count , Male , Middle Aged , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Young Adult
17.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1493337

ABSTRACT

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Cellular/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Female , Humans , Imidazoles/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Male , Middle Aged , Toll-Like Receptors/immunology
18.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484868

ABSTRACT

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Subject(s)
COVID-19/immunology , Cross Protection/physiology , Immunity, Innate/physiology , Influenza Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Cytokines/immunology , Cytokines/metabolism , Down-Regulation , Imidazoles/immunology , Incidence , Influenza Vaccines/immunology , Netherlands/epidemiology , Personnel, Hospital , Poly I-C/immunology , Proteomics , Risk Factors , Sequence Analysis, RNA
19.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1480791

ABSTRACT

Novel xanthine and imidazolone derivatives were synthesized based on oxazolone derivatives 2a-c as a key intermediate. The corresponding xanthine 3-5 and imidazolone derivatives 6-13 were obtained via reaction of oxazolone derivative 2a-c with 5,6-diaminouracils 1a-e under various conditions. Xanthine compounds 3-5 were obtained by cyclocondensation of 5,6-diaminouracils 1a-c with different oxazolones in glacial acetic acid. Moreover, 5,6-diaminouracils 1a-e were reacted with oxazolones 2a-c in presence of drops of acetic acid under fused condition yielding the imidazolone derivatives 6-13. Furthermore, Schiff base of compounds 14-16 were obtained by condensing 5,6-diaminouracils 1a,b,e with 4-dimethylaminobenzaldehyde in acetic acid. The structural identity of the resulting compounds was resolved by IR, 1H-, 13C-NMR and Mass spectral analyses. The novel synthesized compounds were screened for their antifungal and antibacterial activities. Compounds 3, 6, 13 and 16 displayed the highest activity against Escherichia coli as revealed from the IC50 values (1.8-1.9 µg/mL). The compound 16 displayed a significant antifungal activity against Candia albicans (0.82 µg/mL), Aspergillus flavus (1.2 µg/mL) comparing to authentic antibiotics. From the TEM microgram, the compounds 3, 12, 13 and 16 exhibited a strong deformation to the cellular entities, by interfering with the cell membrane components, causing cytosol leakage, cellular shrinkage and irregularity to the cell shape. In addition, docking study for the most promising antimicrobial tested compounds depicted high binding affinity against acyl carrier protein domain from a fungal type I polyketide synthase (ACP), and Baumannii penicillin- binding protein (PBP). Moreover, compound 12 showed high drug- likeness, and excellent pharmacokinetics, which needs to be in focus for further antimicrobial drug development. The most promising antimicrobial compounds underwent theoretical investigation using DFT calculation.


Subject(s)
Anti-Infective Agents/chemical synthesis , Imidazoles/chemistry , Uracil/chemistry , Xanthines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Binding Sites , Candida albicans/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Density Functional Theory , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Imidazoles/metabolism , Imidazoles/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Structure-Activity Relationship , Thermodynamics , Vero Cells
20.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: covidwho-1475291

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/drug therapy , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL