Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Cell Biochem ; 477(6): 1725-1737, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1729340

ABSTRACT

Respiratory infections of viral origin have become the leading cause of infectious diseases in the world. In 2020, the World Health Organization (WHO) declared a pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Coronavirus Disease 2019 (Covid-19). The pandemic caused by the new coronavirus has challenged the entire global health system, since Covid-19 has a high rate of morbidity and mortality. The immune response to the virus depends on factors such as age, genetics, nutritional status, physical status, as well as environmental factors. Despite scientific advances, so far, there is still no specific therapy for the disease. Thus, this study aims to analyze the contribution of physical exercise and maintenance and/or supplementation of vitamin D to the strengthening of the immune system against viral infections, among them, Covid-19. Regular practice of moderate-intensity physical activity is responsible for promoting a reduction in the concentrations of pro-inflammatory cytokines (IL-6, TNF-α and IL-1ß), as well as triggering the increase in the production of anti-inflammatory cytokines (IL-4 and IL-10). In addition, hypovitaminosis D predisposes to the development of chronic diseases and infections. Therefore, in patients affected by Covid-19, the maintenance of vitamin D levels contributes significantly to the 0prevention of the cytokine storm. Thus, the association between maintaining vitamin D levels and performing moderate-intensity physical exercise is responsible for strengthening the immune system and, therefore, triggering a defense mechanism against infections by intracellular microorganisms, in which SARS -CoV-2.


Subject(s)
COVID-19 , Cytokines , Exercise , Humans , Immune System/physiology , SARS-CoV-2 , Vitamin D , Vitamins/therapeutic use
2.
Nat Immunol ; 22(12): 1479-1489, 2021 12.
Article in English | MEDLINE | ID: covidwho-1537327

ABSTRACT

The extreme diversity of the human immune system, forged and maintained throughout evolutionary history, provides a potent defense against opportunistic pathogens. At the same time, this immune variation is the substrate upon which a plethora of immune-associated diseases develop. Genetic analysis suggests that thousands of individually weak loci together drive up to half of the observed immune variation. Intense selection maintains this genetic diversity, even selecting for the introgressed Neanderthal or Denisovan alleles that have reintroduced variation lost during the out-of-Africa migration. Variations in age, sex, diet, environmental exposure, and microbiome each potentially explain the residual variation, with proof-of-concept studies demonstrating both plausible mechanisms and correlative associations. The confounding interaction of many of these variables currently makes it difficult to assign definitive contributions. Here, we review the current state of play in the field, identify the key unknowns in the causality of immune variation, and identify the multidisciplinary pathways toward an improved understanding.


Subject(s)
Evolution, Molecular , Genetic Variation , Immune System/physiology , Age Factors , Diet , Female , Gene-Environment Interaction , Host-Pathogen Interactions , Humans , Immune System/immunology , Immune System/metabolism , Male , Microbiota/immunology , Sex Factors , Species Specificity
3.
Nutrients ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1480892

ABSTRACT

Home confinement during the COVID-19 pandemic is accompanied by dramatic changes in lifestyle and dietary behaviors that can significantly influence health. We conducted an online cross-sectional survey to assess COVID-19 pandemic-induced dietary and lifestyle changes and their association with perceived health status and self-reported body weight changes among 1000 Indian adults in early 2021. Positive improvements in dietary habits, e.g., eating more nutritious (85% of participants) and home-cooked food (89%) and an increase in overall nutrition intake (79%), were observed. Sixty-five percent of participants self-reported increased oat consumption to support immunity. There were some negative changes, e.g., more binge eating (69%), eating more in between meals (67%), and increasing meal portion size (72%). Two-thirds of participants reported no change in lifestyles, whereas 21 and 23% reported an increase, and 13 and 10% reported a decrease in physical activity and sleep, respectively. Overall, 64 and 65% of participants reported an improvement in perceived health and an increase in body weight during the COVID-19 period compared to pre-COVID-19, respectively. The top motivations for improving dietary habits included improving physical and mental health and building immunity. In conclusion, the overall perceived health was improved and there was an increase in self-reported body weight in most participants during COVID-19. Diet emerged as the most crucial determinant for these changes.


Subject(s)
COVID-19 , Diet, Healthy , Exercise , Feeding Behavior , Quarantine , Sleep , Adolescent , Adult , Cross-Sectional Studies , Diet Surveys , Female , Food Preferences , Humans , Immune System/physiology , India , Male , Mental Health , Middle Aged , Nutritional Status , Nutritive Value , Prospective Studies , Time Factors , Young Adult
4.
Biol Direct ; 16(1): 18, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1477451

ABSTRACT

Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.


Subject(s)
COVID-19/therapy , Immune System/physiology , Muscles/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , COVID-19/immunology , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Insulin-Like Growth Factor II/metabolism , Interferon-gamma/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Macrophages/metabolism , Mice , Muscles/metabolism , Oxidative Phosphorylation , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/chemistry , Tumor Necrosis Factor-alpha/metabolism
6.
Dtsch Med Wochenschr ; 146(16): 1085-1090, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1366846

ABSTRACT

Since the end of 2019 a new coronavirus, SARS-CoV-2, first identified in Wuhan, China, is spreading around the world partially associated with a high death toll. Besides hygienic measurements to reduce the spread of the virus vaccines have been confected, partially based on the experiences with Ebola virus vaccine, based on recombinant human or chimpanzee adenovirus carrying the spike protein and its ACE2 receptor binding domain (RBD). Further vaccines are constructed by spike protein coding mRNA incorporated in lipid nano vesicles that after entry in human cells produce spike protein. Both vaccine types induce a strong immune response that lasts for months possibly for T-cell immunity a few years. Due to mutations in the coronavirus genome in several parts of the world variants selected, that were partially more pathogenic and partially easier transmissible - variants of concern (VOC). Until now vaccinees are protected against the VOC, even when protection might be reduced compared to the Wuhan wild virus.An open field is still how long the vaccine induced immunity will be sufficient to prevent infection and/or disease; and how long the time period will last until revaccination will be required for life saving protection, whether a third vaccination is needed, and whether revaccination with an adenovirus-based vaccine will be tolerated.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immune System/physiology , SARS-CoV-2/immunology , Vaccination/standards , COVID-19/epidemiology , COVID-19/physiopathology , Humans , Immune System/immunology , Immunity, Cellular , Immunity, Humoral , Time Factors
7.
Front Immunol ; 12: 621440, 2021.
Article in English | MEDLINE | ID: covidwho-1305640

ABSTRACT

The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.


Subject(s)
Down Syndrome/immunology , Immune System/physiology , Orthomyxoviridae/physiology , Respiratory Syncytial Viruses/physiology , Respiratory Tract Infections/immunology , SARS-CoV-2/physiology , Virus Diseases/immunology , Adult , Animals , COVID-19 , Down Syndrome/genetics , Down Syndrome/mortality , Humans , Pneumonia , Respiratory Tract Infections/genetics , Respiratory Tract Infections/mortality , Risk , Virus Diseases/genetics , Virus Diseases/mortality
8.
Nat Methods ; 18(6): 577, 2021 06.
Article in English | MEDLINE | ID: covidwho-1272844
9.
Womens Health (Lond) ; 17: 17455065211022262, 2021.
Article in English | MEDLINE | ID: covidwho-1259152

ABSTRACT

In COVID-19 disease, are reported gender differences in relation to severity and death. The aim of this review is to highlight gender differences in the immune response to COVID-19. The included studies were identified using PubMed, until 30 October 2020. The search included the following keywords: SARS-CoV-2, COVID-19, gender, age, sex, and immune system. Literature described that females compared to males have greater inflammatory, antiviral, and humoral immune responses. In female, estrogen is a potential ally to alleviate SARS-COV-2 disease. In male, testosterone reduces vaccination response and depresses the cytokine response. In the older patients, and in particular, in female older patients, it has been reported a progressive functional decline in the immune systems. Differences by gender were reported in infection diseases, including SARS-CoV-2. These data should be confirmed by the other epidemiological studies.


Subject(s)
Aging/immunology , COVID-19/immunology , Immune System/physiology , Immunity/physiology , Sex Factors , Estrogens/metabolism , Female , Humans , Male , SARS-CoV-2/immunology , Severity of Illness Index , Testosterone/metabolism , Vaccination
10.
Afr Health Sci ; 21(1): 189-193, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1220095

ABSTRACT

INTRODUCTION: Like smoking, sedentary lifestyle is an issue of great concern because of its deleterious health challenges and implications. Given the global spread of the new coronavirus (COVID-19), social isolation regulations and laws have been implemented in many countries to contain the spread of the virus and this has caused a drastic shift from the usual physically demanding life to a sedentary lifestyle characterized by significantly reduced physical activities and prolong sitting. METHODS/DATA SOURCE: Human and nonhuman primate literature was examined to compare experimental and clinical modulation of inflammatory cytokines by exercised-induced myokines. DATA SYNTHESIS: Experimental and clinical evidence was used to examine whether exercised-induced myokines can prime the immune system of the elderly population during the COVID-19 pandemic. CONCLUSION: The immune system changes with advancement in age which increases the likelihood of infectious disease morbidity and mortality in older adults. Several epidemiological studies have also shown that physical inactivity among geriatric population impacts negatively on the immune system. Evidences on the importance of exercise in priming the immune system of elderly individuals could be an effective therapeutic strategy in combating the virus as it may well be a case of "let those with the best immune system win".


Subject(s)
Aging/immunology , COVID-19/prevention & control , Exercise , Immune System , Sedentary Behavior , Aged , Aged, 80 and over , COVID-19/immunology , Cytokines/immunology , Humans , Immune System/physiology , Pandemics
11.
Circ Res ; 128(8): 1214-1236, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1186415

ABSTRACT

A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cardiovascular Diseases/virology , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Virus Internalization , Biomarkers/metabolism , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Cardiomyopathies/virology , Gene Expression , Humans , Immune System/physiology , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Neuropilin-1/metabolism , Platelet Activation , RNA, Messenger/metabolism , Renin-Angiotensin System/physiology , Return to Sport , Risk Factors , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Troponin/metabolism , Ventricular Remodeling , Virus Attachment , Virus Internalization/drug effects
13.
Horm Mol Biol Clin Investig ; 42(1): 69-75, 2021 Feb 23.
Article in English | MEDLINE | ID: covidwho-1094095

ABSTRACT

COVID-19 caused by SARS CoV2 (The novel corona virus) has already taken lives of many people across the globe even more than anyone could have imagined. This outbreak occurred in China and since then it is expanding its devastating effects by leaps and bounds. Initially it appeared to be an outbreak of pneumonia but soon it was found to be much more than that and the infectivity was found to be very high. This is the reason that it has taken whole globe in its trap and become a pandemic in such a short span of time. Death is occurring because it is a new virus and human body has no specific antibodies for it. Presently there is no approved vaccine so everyone is susceptible but people with co-morbidities appear to be in more risk and the best way for protection is social distancing and increasing one's natural immunity by taking healthy diet and exercise. When a person is infected the clinical presentation ranges from asymptomatic to severe ARDS, sudden onset of anosmia, headache, cough may be the initial symptoms. This review is focused on immunopathology and effect of COVID-19 on neurological disorders and also the neurological manifestations and the treatment.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Nervous System Diseases , Pandemics , COVID-19/immunology , COVID-19/therapy , Comorbidity , Humans , Immune System/physiology , Nervous System Diseases/complications , Nervous System Diseases/epidemiology , Nervous System Diseases/immunology , Nervous System Diseases/therapy , Neuroimmunomodulation/physiology , SARS-CoV-2/immunology , SARS-CoV-2/physiology
15.
Horm Mol Biol Clin Investig ; 42(1): 77-85, 2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1067449

ABSTRACT

COVID-19 has resulted in an ongoing global pandemic, which spread largely among people who have had close contact with the infected person. The immunopathology of the SARS-CoV-2 virus includes the production of an excess amount of pro-inflammatory cytokines "a cytokine-storm". The respiratory system (main), cardiovascular system and the gastrointestinal tract are the most affected body systems during viral infection. It has been found that most of the patients who require admission to hospital are elderly or have chronic underlying diseases. Higher cases of malnutrition and co-morbidities like diabetes mellitus and cardiovascular diseases are reported in elderly patients due to which, the immune system weakens and hence, the response to the virus is diminished in magnitude. A deficiency of micronutrients results in impaired immune responses leading to improper secretion of cytokines, alterations in secretory antibody response and antibody affinity which increases susceptibility to viral infection. The deficiency of various micronutrients in COVID-19 patient can be treated by appropriate nutritional supplements, prescribed after evaluating the patients' nutritional status. Here we aim to highlight the role of a few particular nutrients namely Vitamin D, Vitamin C, Omega-3 fatty acids, Zinc and Magnesium along with the synergistic roles they play in enhancing immunity and thus, maintaining homeostasis.


Subject(s)
COVID-19/epidemiology , Malnutrition/epidemiology , Ascorbic Acid/physiology , COVID-19/complications , COVID-19/immunology , COVID-19/therapy , Dietary Supplements , Fatty Acids, Omega-3/physiology , Humans , Immune System/physiology , Magnesium/physiology , Malnutrition/complications , Malnutrition/immunology , Malnutrition/therapy , Micronutrients/physiology , Nutritional Status/physiology , Pandemics , SARS-CoV-2/physiology , Vitamin D/physiology , Zinc/physiology
16.
Immunity ; 53(3): 510-523, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-761744

ABSTRACT

Integrated immunometabolic responses link dietary intake, energy utilization, and storage to immune regulation of tissue function and is therefore essential for the maintenance and restoration of homeostasis. Adipose-resident leukocytes have non-traditional immunological functions that regulate organismal metabolism by controlling insulin action, lipolysis, and mitochondrial respiration to control the usage of substrates for production of heat versus ATP. Energetically expensive vital functions such as immunological responses might have thus evolved to respond accordingly to dietary surplus and deficit of macronutrient intake. Here, we review the interaction of dietary intake of macronutrients and their metabolism with the immune system. We discuss immunometabolic checkpoints that promote healthspan and highlight how dietary fate and regulation of glucose, fat, and protein metabolism might affect immunity.


Subject(s)
Adipose Tissue/metabolism , Diet , Energy Metabolism/physiology , Immune System/physiology , Immunity/physiology , Caloric Restriction , Dietary Fats , Glucose/metabolism , Humans , Leukocytes/immunology , Macrophages/immunology , Obesity/pathology
17.
Curr Sports Med Rep ; 19(9): 341-342, 2020 09.
Article in English | MEDLINE | ID: covidwho-1004385
18.
Biol Direct ; 15(1): 30, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-999756

ABSTRACT

Knowing the "point of view" of the immune system is essential to understand the characteristic of a pandemic, such as that generated by the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2, responsible for the Coronavirus Disease (COVID)-19. In this review, we will discuss the general host/pathogen interactions dictating protective immune response or immunopathology, addressing the role of immunity or immunopathology in influencing the clinical infection outcome, and debate the potential immunoprophylactic and immunotherapy strategies required to fight the virus infection.


Subject(s)
COVID-19/immunology , Immune System/physiology , Animals , Antibodies, Monoclonal/therapeutic use , Autoimmunity , COVID-19 Vaccines , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity , Immunity, Innate , Immunotherapy
19.
Soins ; 65(849): 59-62, 2020 Oct.
Article in French | MEDLINE | ID: covidwho-997636

ABSTRACT

Our social environment shapes our eating habits, notably our consumption of fruit and vegetables rich in micronutrients (vitamins and trace elements), essential for regulating the immune system. Ensuring a balanced intake of micronutrients could prove to be particularly beneficial for patients with severe forms of COVID-19 suffering from critical immune dysregulation.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immune System/physiology , Micronutrients/administration & dosage , Vitamins/administration & dosage , Humans
20.
Nutrients ; 12(10)2020 Sep 29.
Article in English | MEDLINE | ID: covidwho-982846

ABSTRACT

The third coronavirus outbreak in the last two decades has caused significant damage to the world's economy and community health. The highly contagious COVID-19 infection has affected millions of people to date and has led to hundreds of thousands of deaths worldwide. Aside from the highly infectious nature of SARS-CoV-2, the lack of a treatment or vaccine has been the main reason for its spread. Thus, it has become necessary to find alternative methods for controlling SARS-CoV-2. For the present review, we conducted an online search for different available nutrition-based therapies for previously known coronavirus infections and RNA-based virus infections as well as general antiviral therapies. These treatments have promise for combating COVID-19, as various nutrients and minerals play direct and indirect roles in the control and prevention of this newly emerged viral infection. The patients' nutritional status with COVID-19 must be analyzed before administering any treatment, and nutritional supplements should be given to the affected individuals along with routine treatment. We suggest a potential interventional role of nutrients to strengthen the immune system against the emerging infection caused by COVID-19.


Subject(s)
Coronavirus Infections/immunology , Immune System/drug effects , Minerals/pharmacology , Pneumonia, Viral/immunology , Trace Elements/pharmacology , Vitamins/pharmacology , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Dietary Supplements , Humans , Immune System/physiology , Micronutrients , Minerals/therapeutic use , Nutritional Status , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Trace Elements/therapeutic use , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL