Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
Add filters

Document Type
Year range
2.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1522470

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic, and a significant portion of the infected population may remain asymptomatic. Given this, five surveys were carried out between May and September 2020 with a total of 3585 volunteers in the municipality of Foz do Iguaçu, State of Paraná, a triple border region between Brazil/Argentina/Paraguay. Five months after the first infection, volunteers were re-analysed for the production of IgG anti-Spike and anti-RBD-Spike, in addition to analyses of cellular immunity. Seroconversion rates ranged from 4.4 % to a peak of 37.21 % followed by a reduction in seroconversion to 21.1 % in September, indicating that 25 % of the population lost their circulating anti-SARS-CoV-2 antibodies 3 months after infection. Analyses after 5 months of infection showed that only 17.2 % of people still had anti-RBD-Spike antibodies, however, most volunteers had some degree of cellular immune response. The strategy of letting people become naturally infected with SARS-CoV-2 to achieve herd immunity is flawed, and the first contact with the virus may not generate enough immunogenic stimulus to prevent a possible second infection.


Subject(s)
COVID-19/immunology , Carrier State/immunology , Immunity, Herd , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Argentina/epidemiology , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Carrier State/epidemiology , Carrier State/virology , Humans , Immunity, Cellular , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology
3.
Biomed Pharmacother ; 144: 112230, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517059

ABSTRACT

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has become a serious challenge for medicine and science. Analysis of the molecular mechanisms associated with the clinical manifestations and severity of COVID-19 has identified several key points of immune dysregulation observed in SARS-CoV-2 infection. For diabetic patients, factors including higher binding affinity and virus penetration, decreased virus clearance and decreased T cell function, increased susceptibility to hyperinflammation, and cytokine storm may make these patients susceptible to a more severe course of COVID-19 disease. Metabolic changes induced by diabetes, especially hyperglycemia, can directly affect the immunometabolism of lymphocytes in part by affecting the activity of the mTOR protein kinase signaling pathway. High mTOR activity can enhance the progression of diabetes due to the activation of effector proinflammatory subpopulations of lymphocytes and, conversely, low activity promotes the differentiation of T-regulatory cells. Interestingly, metformin, an extensively used antidiabetic drug, inhibits mTOR by affecting the activity of AMPK. Therefore, activation of AMPK and/or inhibition of the mTOR-mediated signaling pathway may be an important new target for drug therapy in COVID-19 cases mostly by reducing the level of pro-inflammatory signaling and cytokine storm. These suggestions have been partially confirmed by several retrospective analyzes of patients with diabetes mellitus hospitalized for severe COVID-19.


Subject(s)
COVID-19/drug therapy , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Immunity, Cellular/drug effects , Metformin/therapeutic use , Severity of Illness Index , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Humans , Hypoglycemic Agents/pharmacology , Immunity, Cellular/physiology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Metformin/pharmacology , Mortality/trends , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
4.
Biomaterials ; 278: 121159, 2021 11.
Article in English | MEDLINE | ID: covidwho-1509590

ABSTRACT

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist. Thus, p(Man-TLR7) is designed to target relevant antigen-presenting cells (APCs) via mannose-binding receptors and then activate TLR7 upon endocytosis. The p(Man-TLR7) construct is amenable to conjugation to protein antigens such as the Spike protein of SARS-CoV-2, yielding Spike-p(Man-TLR7). Here, we demonstrate Spike-p(Man-TLR7) vaccination elicits robust antigen-specific cellular and humoral responses in mice. In adult and elderly wild-type mice, vaccination with Spike-p(Man-TLR7) generates high and long-lasting titers of anti-Spike IgGs, with neutralizing titers exceeding levels in convalescent human serum. Interestingly, adsorbing Spike-p(Man-TLR7) to the depot-forming adjuvant alum amplified the broadly neutralizing humoral responses to levels matching those in mice vaccinated with formulations based off of clinically-approved adjuvants. Additionally, we observed an increase in germinal center B cells, antigen-specific antibody secreting cells, activated T follicular helper cells, and polyfunctional Th1-cytokine producing CD4+ and CD8+ T cells. We conclude that Spike-p(Man-TLR7) is an attractive, next-generation subunit vaccine candidate, capable of inducing durable and robust antibody and T cell responses.


Subject(s)
COVID-19 , Immunity, Humoral , Adjuvants, Immunologic , Aged , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity, Cellular , Mice , SARS-CoV-2
5.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1501541

ABSTRACT

Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.


Subject(s)
Endogenous Retroviruses/physiology , Retroelements , Virus Diseases/immunology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Humans , Immunity, Cellular , Promoter Regions, Genetic , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Pattern Recognition/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Proteins/metabolism , Virion/metabolism , Virus Diseases/genetics , Virus Diseases/virology
7.
Front Immunol ; 12: 741639, 2021.
Article in English | MEDLINE | ID: covidwho-1497078

ABSTRACT

Children have reduced severity of COVID-19 compared to adults and typically have mild or asymptomatic disease. The immunological mechanisms underlying these age-related differences in clinical outcomes remain unexplained. Here, we quantify 23 immune cell populations in 141 samples from children and adults with mild COVID-19 and their PCR-negative close household contacts at acute and convalescent time points. Children with COVID-19 displayed marked reductions in myeloid cells during infection, most prominent in children under the age of five. Recovery from infection in both children and adults was characterised by the generation of CD8 TCM and CD4 TCM up to 9 weeks post infection. SARS-CoV-2-exposed close contacts also had immunological changes over time despite no evidence of confirmed SARS-CoV-2 infection on PCR testing. This included an increase in low-density neutrophils during convalescence in both exposed children and adults, as well as increases in CD8 TCM and CD4 TCM in exposed adults. In comparison to children with other common respiratory viral infections, those with COVID-19 had a greater change in innate and T cell-mediated immune responses over time. These findings provide new mechanistic insights into the immune response during and after recovery from COVID-19 in both children and adults.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Convalescence , Environmental Exposure , Family Characteristics , Female , Humans , Immunity, Cellular , Immunologic Memory , Infant , Male , Middle Aged , Young Adult
10.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1493337

ABSTRACT

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Cellular/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Female , Humans , Imidazoles/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Male , Middle Aged , Toll-Like Receptors/immunology
13.
Front Immunol ; 12: 727850, 2021.
Article in English | MEDLINE | ID: covidwho-1477821

ABSTRACT

Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells.


Subject(s)
Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunocompromised Host/immunology , Longitudinal Studies , Male , Middle Aged , Vaccination , Young Adult
14.
Front Immunol ; 12: 726960, 2021.
Article in English | MEDLINE | ID: covidwho-1477820

ABSTRACT

Objectives: In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. Methods: We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. Results: Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. Conclusion: This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization Schedule , Immunoglobulin G/blood , Lymphocyte Count , Male , Prospective Studies , Vaccination
15.
Cell ; 184(20): 5077-5081, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1474390

ABSTRACT

As the SARS-CoV-2 pandemic evolves, new variants continue to emerge. Some highly transmissible variants, such as Delta, also raised concerns about the effectiveness provided by current vaccines. Understanding immunological correlates of protection and how laboratory findings correspond to clinical effectiveness is imperative to shape future vaccination strategies.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/classification , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Mutation , SARS-CoV-2/genetics
16.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478718

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology
17.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: covidwho-1470893

ABSTRACT

SputnikV is a vaccine against SARS-CoV-2 developed by the Gamaleya National Research Centre for Epidemiology and Microbiology. The vaccine has been shown to induce both humoral and cellular immune responses, yet the mechanisms remain largely unknown. Forty SputnikV vaccinated individuals were included in this study which aimed to demonstrate the location of immunogenic domains of the SARS-CoV-2 S protein using an overlapping peptide library. Additionally, cytokines in the serum of vaccinated and convalescent COVID-19 patients were analyzed. We have found antibodies from both vaccinated and convalescent sera bind to immunogenic regions located in multiple domains of SARS-CoV-2 S protein, including Receptor Binding Domain (RBD), N-terminal Domain (NTD), Fusion Protein (FP) and Heptad Repeats (HRs). Interestingly, many peptides were recognized by immunized and convalescent serum antibodies and correspond to conserved regions in circulating variants of SARS-CoV-2. This breadth of reactivity was still evident 90 days after the first dose of the vaccine, showing that the vaccine has induced a prolonged response. As evidenced by the activation of T cells, cellular immunity strongly suggests the high potency of the SputnikV vaccine against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , Adult , Amino Acid Sequence , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/metabolism , Female , Humans , Male , Peptides/chemistry , Peptides/immunology , Principal Component Analysis , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccination
18.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1470027

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Camelids, New World/immunology , Female , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Pandemics/prevention & control , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/genetics , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1467778

ABSTRACT

The importance of the adaptive T cell response in the control and resolution of viral infection has been well established. However, the nature of T cell-mediated viral control mechanisms in life-threatening stages of COVID-19 has yet to be determined. The aim of the present study was to determine the function and phenotype of T cell populations associated with survival or death of patients with COVID-19 in intensive care as a result of phenotypic and functional profiling by mass cytometry. Increased frequencies of circulating, polyfunctional CD4+CXCR5+HLA-DR+ stem cell memory T cells (Tscms) and decreased proportions of granzyme B-expressing and perforin-expressing effector memory T cells were detected in recovered and deceased patients, respectively. The higher abundance of polyfunctional PD-L1+CXCR3+CD8+ effector T cells (Teffs), CXCR5+HLA-DR+ Tscms, and anti-nucleocapsid (anti-NC) cytokine-producing T cells permitted us to differentiate between recovered and deceased patients. The results from a principal component analysis show an imbalance in the T cell compartment that allowed for the separation of recovered and deceased patients. The paucity of circulating PD-L1+CXCR3+CD8+ Teffs and NC-specific CD8+ T cells accurately forecasts fatal disease outcome. This study provides insight into the nature of the T cell populations involved in the control of COVID-19 and therefore might impact T cell-based vaccine designs for this infectious disease.


Subject(s)
B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , Receptors, CXCR3/immunology , Adult , COVID-19/mortality , COVID-19/pathology , Epitopes, T-Lymphocyte/immunology , Female , France/epidemiology , Humans , Immunologic Memory , Lymphocyte Activation , Male , SARS-CoV-2 , Survival Rate/trends
20.
Int Immunol ; 33(10): 529-540, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1467360

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused millions of deaths, and serious consequences to public health, economies and societies. Rapid responses in vaccine development have taken place since the isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the release of the viral genome sequence. By 21 May 2021, 101 vaccines were under clinical trials, and published data were available for 18 of them. Clinical study results from some vaccines indicated good immunogenicity and acceptable reactogenicity. Here, we focus on these 18 vaccines that had published clinical data to dissect the induced humoral and cellular immune responses as well as their safety profiles and protection efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Animals , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...