Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Front Immunol ; 12: 727850, 2021.
Article in English | MEDLINE | ID: covidwho-1477821

ABSTRACT

Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells.


Subject(s)
Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunocompromised Host/immunology , Longitudinal Studies , Male , Middle Aged , Vaccination , Young Adult
2.
Front Immunol ; 12: 726960, 2021.
Article in English | MEDLINE | ID: covidwho-1477820

ABSTRACT

Objectives: In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. Methods: We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. Results: Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. Conclusion: This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization Schedule , Immunoglobulin G/blood , Lymphocyte Count , Male , Prospective Studies , Vaccination
3.
Viruses ; 13(10)2021 10 13.
Article in English | MEDLINE | ID: covidwho-1470992

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the coronavirus disease 2019 (COVID-19) pandemic, severely affecting public health and the global economy. Adaptive immunity plays a crucial role in fighting against SARS-CoV-2 infection and directly influences the clinical outcomes of patients. Clinical studies have indicated that patients with severe COVID-19 exhibit delayed and weak adaptive immune responses; however, the mechanism by which SARS-CoV-2 impedes adaptive immunity remains unclear. Here, by using an in vitro cell line, we report that the SARS-CoV-2 spike protein significantly inhibits DNA damage repair, which is required for effective V(D)J recombination in adaptive immunity. Mechanistically, we found that the spike protein localizes in the nucleus and inhibits DNA damage repair by impeding key DNA repair protein BRCA1 and 53BP1 recruitment to the damage site. Our findings reveal a potential molecular mechanism by which the spike protein might impede adaptive immunity and underscore the potential side effects of full-length spike-based vaccines.


Subject(s)
Adaptive Immunity/immunology , COVID-19/pathology , DNA Repair/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , V(D)J Recombination/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BRCA1 Protein/antagonists & inhibitors , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Cell Line , DNA Damage/genetics , HEK293 Cells , Humans , Immunity, Humoral/immunology , Immunosuppression , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Tumor Suppressor p53-Binding Protein 1/antagonists & inhibitors
4.
Elife ; 102021 09 29.
Article in English | MEDLINE | ID: covidwho-1468709

ABSTRACT

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However, vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after the second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titers in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher, respectively, after dual vaccination. Post-vaccine sera mediated strong neutralization of live Victoria infection and although neutralization titers were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 variant of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , RNA, Messenger/immunology , SARS-CoV-2/immunology , Age Factors , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunity, Cellular , Immunity, Humoral/immunology , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
5.
Int Immunol ; 33(10): 529-540, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1467360

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused millions of deaths, and serious consequences to public health, economies and societies. Rapid responses in vaccine development have taken place since the isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the release of the viral genome sequence. By 21 May 2021, 101 vaccines were under clinical trials, and published data were available for 18 of them. Clinical study results from some vaccines indicated good immunogenicity and acceptable reactogenicity. Here, we focus on these 18 vaccines that had published clinical data to dissect the induced humoral and cellular immune responses as well as their safety profiles and protection efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Animals , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology
6.
Viruses ; 13(10)2021 10 05.
Article in English | MEDLINE | ID: covidwho-1463831

ABSTRACT

Humoral immunity after infection or after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been attributed a key part in mitigating the further transmission of the virus. In this study, we used a commercial anti-Spike immunoglobulin G (S-IgG) assay and developed a cell culture-based neutralization assay to understand the longitudinal course of neutralizing antibodies in both SARS-CoV2 infected or vaccinated individuals. We show that even more than one year after infection, about 78% of observed study participants remained seropositive concerning S-IgG antibodies. In addition, the serum of the individuals had stable neutralization capacity in a neutralization assay against a SARS-CoV-2 patient isolate from March 2020. We also examined volunteers after either homologous BNT162b2 prime-boost vaccination or heterologous AZD1222 prime/mRNA-based booster vaccination. Both the heterologous and the homologous vaccination regimens induced higher levels of neutralizing antibodies in healthy subjects when compared to subjects after a mild infection, showing the high effectiveness of available vaccines. In addition, we could demonstrate the reliability of S-IgG levels in predicting neutralization capacity, with 94.8% of seropositive samples showing a neutralization titer of ≥10, making it a viable yet cheap and easy-to-determine surrogate parameter for neutralization capacity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Humans , Immunity, Humoral/immunology , Immunization, Secondary , Immunoglobulin G/blood , Immunoglobulin G/immunology , Middle Aged , Neutralization Tests , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vero Cells
7.
Front Immunol ; 12: 729189, 2021.
Article in English | MEDLINE | ID: covidwho-1450809

ABSTRACT

Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Adaptive Immunity/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Chlorocebus aethiops , Cross Protection/immunology , DEAD Box Protein 58 , HEK293 Cells , Humans , Immunity, Humoral/immunology , Immunization, Passive , Mice , Mice, Inbred C57BL , Receptors, Immunologic/agonists , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vero Cells
9.
Front Immunol ; 12: 705441, 2021.
Article in English | MEDLINE | ID: covidwho-1430695

ABSTRACT

The purpose of this study is to monitor specific anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) IgG and IgM antibody production in patients with severe forms of coronavirus disease 2019 (COVID-19) using various commercially available quantitative and qualitative tests. The sera of 23 confirmed COVID-19 patients were processed for anti-SARS-CoV-2 IgG and IgM detection. Three different immunoassays, viz. Abbott Architect® SARS-CoV-2 IgG assay, and two quantitative tests, ANSH® SARS-CoV-2 and AESKULISA® SARS-CoV-2 Nucleocapsid Protein (NP), were performed and the results pooled, from diagnosis to serum collection. Seroconversion rates were computed for all 3 assays, and possible correlations were tested using the Pearson correlation coefficient and Cohen's kappa coefficient. Overall, 70 combinations of qualitative and quantitative IgG and IgM results were pooled and analyzed. In the early phase (0-4 days after diagnosis), in all tests, IgG seroconversion rates were 43%-61%, and increased in all tests gradually to 100% after 15 days. The Pearson correlation coefficient showed a strong positive relationship between the qualitative IgG test results and both quantitative IgG tests. IgM detection was inconsistent, with maximal concentrations and seroconversion rates between 10-15 days after diagnosis and slight-to-fair agreement between the two quantitative immunoassays. There was no significant association between mortality with IgG or IgM seroconversion or concentrations. Patients with severe COVID-19 develop an early, robust anti-SARS-CoV-2 specific humoral immune response involving IgG immunoglobulins. Further comparative studies are warranted to analyze the value of serological testing in predicting the severity of COVID-19 and detecting prior exposure.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Comorbidity , Female , Humans , Immunity, Humoral/immunology , Immunoassay/methods , Male , Middle Aged , Retrospective Studies , Saudi Arabia , Sensitivity and Specificity , Seroconversion
10.
Microbiol Spectr ; 9(2): e0073121, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1410324

ABSTRACT

COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens. IMPORTANCE Comprehending humoral immunity to SARS-CoV-2, including in children, is crucial for future public health and vaccine strategies. Others have suggested that mucosal antibody measurement could be an important and more convenient tool to evaluate humoral immunity compared to circulating antibodies. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We show the heterogeneity of SARS-CoV-2 antibodies, in terms of both antigen specificity and differences between circulating and mucosal antibodies, emphasizing the additional value of saliva antibody detection next to detection of antibodies in serum.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , COVID-19/diagnosis , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Phosphoproteins/immunology , Prevalence , Sensitivity and Specificity , Seroepidemiologic Studies
12.
Ann Rheum Dis ; 80(10): 1345-1350, 2021 10.
Article in English | MEDLINE | ID: covidwho-1394067

ABSTRACT

OBJECTIVES: Evidence suggests that B cell-depleting therapy with rituximab (RTX) affects humoral immune response after vaccination. It remains unclear whether RTX-treated patients can develop a humoral and T-cell-mediated immune response against SARS-CoV-2 after immunisation. METHODS: Patients under RTX treatment (n=74) were vaccinated twice with either mRNA-1273 or BNT162b2. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 S immunoassay against the receptor-binding domain (RBD) of the spike protein and neutralisation tests. SARS-CoV-2-specific T-cell responses were quantified by IFN-γ enzyme-linked immunosorbent spot assays. Prepandemic healthy individuals (n=5), as well as healthy individuals (n=10) vaccinated with BNT162b2, served as controls. RESULTS: All healthy controls developed antibodies against the SARS-CoV-2 RBD of the spike protein, but only 39% of the patients under RTX treatment seroconverted. Antibodies against SARS-CoV-2 RBD significantly correlated with neutralising antibodies (τ=0.74, p<0.001). Patients without detectable CD19+ peripheral B cells (n=36) did not develop specific antibodies, except for one patient. Circulating B cells correlated with the levels of antibodies (τ=0.4, p<0.001). However, even patients with a low number of B cells (<1%) mounted detectable SARS-CoV-2-specific antibody responses. SARS-CoV-2-specific T cells were detected in 58% of the patients, independent of a humoral immune response. CONCLUSIONS: The data suggest that vaccination can induce SARS-CoV-2-specific antibodies in RTX-treated patients, once peripheral B cells at least partially repopulate. Moreover, SARS-CoV-2-specific T cells that evolved in more than half of the vaccinated patients may exert protective effects independent of humoral immune responses.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Rituximab/therapeutic use , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunogenicity, Vaccine/drug effects , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes/immunology
13.
Front Immunol ; 11: 618685, 2020.
Article in English | MEDLINE | ID: covidwho-1389172

ABSTRACT

Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , Immunity, Mucosal/immunology , Nasal Mucosa/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Convalescence , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
14.
Sci Immunol ; 6(60)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1369380

ABSTRACT

Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host , Kidney Transplantation , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , Female , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Male , Middle Aged , Renal Dialysis , SARS-CoV-2 , Transplant Recipients
15.
Immunol Res ; 69(6): 576-583, 2021 12.
Article in English | MEDLINE | ID: covidwho-1366407

ABSTRACT

The development of vaccines to prevent SARS-CoV-2 infection has mainly relied on the induction of neutralizing antibodies (nAbs) to the Spike protein of SARS-CoV-2, but there is growing evidence that T cell immune response can contribute to protection as well. In this study, an anti-receptor binding domain (RBD) antibody assay and an INFγ-release assay (IGRA) were used to detect humoral and cellular responses to the Pfizer-BioNTech BNT162b2 vaccine in three separate cohorts of COVID-19-naïve patients: 108 healthcare workers (HCWs), 15 elderly people, and 5 autoimmune patients treated with immunosuppressive agents. After the second dose of vaccine, the mean values of anti-RBD antibodies (Abs) and INFγ were 123.33 U/mL (range 27.55-464) and 1513 mIU/mL (range 145-2500) in HCWs and 210.7 U/mL (range 3-500) and 1167 mIU/mL (range 83-2500) in elderly people. No correlations between age and immune status were observed. On the contrary, a weak but significant positive correlation was found between INFγ and anti-RBD Abs values (rho = 0.354, p = 0.003). As to the autoimmune cohort, anti-RBD Abs were not detected in the two patients with absent peripheral CD19+B cells, despite high INFγ levels being observed in all 5 patients after vaccination. Even though the clinical relevance of T cell response has not yet been established as a correlate of vaccine-induced protection, IGRA testing has showed optimal sensitivity and specificity to define vaccine responders, even in patients lacking a cognate antibody response to the vaccine.


Subject(s)
COVID-19 Vaccines/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunocompromised Host/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Health Personnel/statistics & numerical data , Humans , Immunogenicity, Vaccine/immunology , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Interferon-gamma/blood , Lymphocyte Count , Male , Middle Aged , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Young Adult
16.
Nat Commun ; 12(1): 4984, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361636

ABSTRACT

SARS-CoV-2 vaccination has been launched worldwide to build effective population-level immunity to curb the spread of this virus. The effectiveness and duration of protective immunity is a critical factor for public health. Here, we report the kinetics of the SARS-CoV-2 specific immune response in 204 individuals up to 1-year after recovery from COVID-19. RBD-IgG and full-length spike-IgG concentrations and serum neutralizing capacity decreases during the first 6-months, but is maintained stably up to 1-year after hospital discharge. Even individuals who had generated high IgG levels during early convalescent stages had IgG levels that had decreased to a similar level one year later. Notably, the RBD-IgG level positively correlates with serum neutralizing capacity, suggesting the representative role of RBD-IgG in predicting serum protection. Moreover, viral-specific cellular immune protection, including spike and nucleoprotein specific, persisted between 6 months and 12 months. Altogether, our study supports the persistence of viral-specific protective immunity over 1 year.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology
17.
J Neuroimmunol ; 359: 577696, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1356324

ABSTRACT

AIM: To determine the influence of high-efficacy disease modifying therapy (DMT) on the development of IgG SARS-CoV-2 antibody response in COVID-19 convalescent people with multiple sclerosis (pwMS). METHODS: Seventy-four pwMS taking high-efficacy DMTs (specifically natalizumab, fingolimod, alemtuzumab, ocrelizumab, cladribine and ublituximab) and diagnosed with COVID-19 and 44 healthy persons (HC) were enrolled. SARS-CoV2 antibodies were tested with Elecsys® Anti-SARSCoV-2 S assay. RESULTS: pwMS taking high-efficacy DMTs had a significantly higher chance of having negative titer of SARS-CoV2 antibodies compared to healthy controls (33 negative pwMS [44.6%] compared to one negative HC [2.3%], p < 0.001). pwMS taking B-cell depleting therapy (ocrelizumab and ublituximab) had a significantly higher chance of having negative titer of SARS-CoV2 antibodies compared to pwMS on all other DMTs (29 negative pwMS on B-cell therapy [64.4%] compared to four negative pwMS on all other DMTs [13.8%], p < 0.001). Out of other DMTs, two (33.3%) pwMS taking fingolimod and two (16.7%) pwMS taking cladribine failed to develop IgG SARS-COV-2 antibodies. B-cell depleting therapy independently predicted negative titer of IgG SARS-CoV-2 antibody (Exp[B] =0.014, 95%CI 0.002-0.110, p < 0.001). CONCLUSIONS: A significant proportion of convalescent COVID-19 pwMS on high-efficacy DMTs will not develop IgG SARS-CoV-2 antibodies. B-cell depleting therapies independently predict negative and low titer of IgG SARS-CoV-2 antibody.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Immunity, Humoral/immunology , Immunologic Factors/therapeutic use , Immunosuppressive Agents/therapeutic use , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Case-Control Studies , Female , Humans , Immunity, Humoral/drug effects , Immunologic Factors/pharmacology , Immunosuppressive Agents/pharmacology , Male , Middle Aged , SARS-CoV-2/metabolism , Treatment Outcome
18.
EBioMedicine ; 70: 103539, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356205

ABSTRACT

BACKGROUND: In recent months numerous health care professional acquired COVID-19 at the workplace resulting in significant shortages in medical and nursing staff. We investigated how prior COVID-19 affects SARS-CoV-2 vaccination and how such knowledge could facilitate frugal vaccination strategies. METHODS: In a cohort of 41 healthcare professionals with (n=14) and without (n=27) previous SARS-CoV-2 infection, we assessed the immune status before, during and after vaccination with BNT162b2. The humoral immune response was assessed by receptor binding domain ELISA and different SARS-CoV-2 neutralisation assays using wildtype and pseudo-typed viruses. T cell immunity against SARS-CoV-2 surface and nucleocapsid peptides were studied using interferon-γ release assays and intracellular flow cytometry. Vaccine-related side effects were captured. FINDINGS: Prior COVID-19 resulted in improved vaccine responses both in the B and T cell compartment. In vaccine recipients with prior COVID-19, the first vaccine dose induced high antibody concentrations comparable to seronegative vaccine recipients after two injections. This translated into more efficient neutralisation of virus particles, even more pronounced than expected from the RBD ELISA results. Furthermore, T cell responses were stronger in convalescents and particularly strong against the SARS-CoV-2 nucleocapsid protein. INTERPRETATION: Herein, we corroborate recent findings suggesting that in convalescents a single vaccine dose is sufficient to boost adequate in vitro neutralisation of SARS-CoV-2 and therefore may be sufficient to induce adequate protection against severe COVID-19. New spike mutated virus variants render the highly conserved nucleocapsid protein - eliciting strong SARS-CoV-2 specific T cell immunity - an interesting additional vaccine target. FUNDING: Christian Doppler Research Association, Johannes Kepler University Linz.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Health Personnel , Humans , Immunity, Humoral/immunology , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
19.
EBioMedicine ; 70: 103524, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356202

ABSTRACT

BACKGROUND: Patients with chronic renal insufficiency on maintenance haemodialysis face an increased risk of COVID-19 induced mortality and impaired vaccine responses. To date, only a few studies have addressed SARS-CoV-2 vaccine elicited immunity in this immunocompromised population. METHODS: We assessed immunogenicity of the mRNA vaccine BNT162b2 in at-risk dialysis patients and characterised systemic cellular and humoral immune responses in serum and saliva using interferon γ release assay and multiplex-based cytokine and immunoglobulin measurements. We further compared binding capacity and neutralization efficacy of vaccination-induced immunoglobulins against emerging SARS-CoV-2 variants Alpha, Beta, Epsilon and Cluster 5 by ACE2-RBD competition assay. FINDINGS: Patients on maintenance haemodialysis exhibit detectable but variable cellular and humoral immune responses against SARS-CoV-2 and variants of concern after a two-dose regimen of BNT162b2. Although vaccination-induced immunoglobulins were detectable in saliva and plasma, both anti-SARS-CoV-2 IgG and neutralization efficacy was reduced compared to a vaccinated non-dialysed control population. Similarly, T-cell mediated interferon γ release after stimulation with SARS-CoV-2 spike peptides was significantly diminished. INTERPRETATION: Quantifiable humoral and cellular immune responses after BNT162b2 vaccination in individuals on maintenance haemodialysis are encouraging, but urge for longitudinal follow-up to assess longevity of immunity. Diminished virus neutralization and interferon γ responses in the face of emerging variants of concern may favour this at-risk population for re-vaccination using modified vaccines at the earliest opportunity. FUNDING: Initiative and Networking Fund of the Helmholtz Association of German Research Centres, EU Horizon 2020 research and innovation program, State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Renal Dialysis/methods , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination/methods
20.
Ann Rheum Dis ; 80(10): 1322-1329, 2021 10.
Article in English | MEDLINE | ID: covidwho-1346035

ABSTRACT

OBJECTIVE: There is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination. METHODS: Serological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases. RESULTS: Following first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy. CONCLUSION: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


Subject(s)
Autoimmune Diseases/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunosuppressive Agents/immunology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...