Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1662694

ABSTRACT

Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.


Subject(s)
Adenosine Triphosphate/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunity/drug effects , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Polyethyleneimine/pharmacology , Allergens/immunology , Animals , Calcium/immunology , Cells, Cultured , Cytokines/immunology , Female , Humans , Immunity/immunology , Mice , Mice, Inbred BALB C , Oxidative Stress/immunology , RNA, Messenger/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology
3.
J Ethnopharmacol ; 287: 114965, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1587284

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY: To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS: Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1ß, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS: In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1ß, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION: CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Medicine, Chinese Traditional/methods , Orthomyxoviridae Infections/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Coronavirus 229E, Human/drug effects , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Immunity/drug effects , Male , Mice, Inbred BALB C , Mice, Inbred ICR , Pneumonia/drug therapy , Pneumonia/pathology , T-Lymphocytes/metabolism , Transcription Factor RelA/metabolism
4.
Rev Med Virol ; 31(5): 1-14, 2021 09.
Article in English | MEDLINE | ID: covidwho-1575050

ABSTRACT

Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Vitamin A/administration & dosage , Animals , COVID-19/virology , Humans , Immunity/drug effects , Immunomodulation/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vitamin A/analysis
5.
Indian J Pharmacol ; 53(5): 394-402, 2021.
Article in English | MEDLINE | ID: covidwho-1547558

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 is spreading like wildfire with no specific recommended treatment in sight. While some risk factors such as the presence of comorbidities, old age, and ethnicity have been recognized, not a lot is known about who the virus will strike first or impact more. In this hopeless scenario, exploration of time-tested facts about viral infections, in general, seems to be a sound basis to prop further research upon. The fact that immunity and its various determinants (e.g., micronutrients, sleep, and hygiene) have a crucial role to play in the defense against invading organisms, may be a good starting point for commencing research into these as yet undisclosed territories. Herein, the excellent immunomodulatory, antiviral, and anti-inflammatory roles of Vitamin D necessitate thorough investigation, particularly in COVID-19 perspective. This article reviews mechanisms and evidence suggesting the role Vitamin D plays in people infected by the newly identified COVID-19 virus. For this review, we searched the databases of Medline, PubMed, and Embase. We studied several meta-analyses and randomized controlled trials evaluating the role of Vitamin D in influenza and other contagious viral infections. We also reviewed the circumstantial and anecdotal evidence connecting Vitamin D with COVID-19 emerging recently. Consequently, it seems logical to conclude that the immune-enhancing, antiviral, anti-inflammatory, and lung-protective role of Vitamin D can be potentially lifesaving. Hence, Vitamin D deserves exhaustive exploration through rigorously designed and controlled scientific trials. Using Vitamin D as prophylaxis and/or chemotherapeutic treatment of COVID-19 infection is an approach worth considering. In this regard, mass assessment and subsequent supplementation can be tried, especially considering the mechanistic evidence in respiratory infections, low potential for toxicity, and widespread prevalence of the deficiency of Vitamin D affecting many people worldwide.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Immunity/drug effects , Lung/drug effects , SARS-CoV-2/drug effects , Vitamin D Deficiency/drug therapy , Vitamin D/therapeutic use , Vitamins/therapeutic use , Animals , Antiviral Agents/adverse effects , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Host-Pathogen Interactions , Humans , Lung/immunology , Lung/physiopathology , Lung/virology , Risk Assessment , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Treatment Outcome , Vitamin D/adverse effects , Vitamin D/blood , Vitamin D Deficiency/immunology , Vitamin D Deficiency/physiopathology , Vitamins/adverse effects
6.
Biomed Pharmacother ; 144: 112276, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446463

ABSTRACT

The potential emergence of SARS-CoV-2 variants capable of escaping vaccine-generated immune responses poses a looming threat to vaccination efforts and will likely prolong the duration of the COVID-19 pandemic. Additionally, the prevalence of beta coronaviruses circulating in animals and the precedent they have set in jumping into human populations indicates that they pose a continuous threat for future pandemics. Currently, only one therapeutic is approved by the U.S. Food and Drug Administration (FDA) for use in treating COVID-19, remdesivir, although other therapies are authorized for emergency use due to this pandemic being a public health emergency. In this review, twenty-four different treatments are discussed regarding their use against COVID-19 and any potential future coronavirus-associated illnesses. Their traditional use, mechanism of action against COVID-19, and efficacy in clinical trials are assessed. Six treatments evaluated are shown to significantly decrease mortality in clinical trials, and ten treatments have shown some form of clinical efficacy.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 , SARS-CoV-2 , Animals , COVID-19/drug therapy , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Humans , Immunity/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Treatment Outcome
7.
J Ethnopharmacol ; 280: 114488, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1397458

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has a long history in the prevention and treatment of pandemics. The TCM formula Lung Cleansing and Detoxifying Decoction (LCDD), also known as Qing Fei Pai Du Decoction, has been demonstrated effective against Coronavirus Disease 2019 (COVID-19). AIM OF THE STUDY: This work aimed to elucidate the active ingredients, targets and pathway mechanism of LCDD related to suppression of inflammatory, immunity regulation and relaxation of airway smooth muscle for the treatment of COVID-19. MATERIALS AND METHODS: Mining chemical ingredients reported in LCDD, 144 compounds covering all herbs were selected and screened against inflammatory-, immunity- and respiratory-related GPCRs including GPR35, H1, CB2, B2, M3 and ß2-adrenoceptor receptor using a label-free integrative pharmacology method. Further, all active compounds were detected using liquid chromatography-tandem mass spectrometry, and an herb-compound-target network based on potency and content of compounds was constructed to elucidate the multi-target and synergistic effect. RESULTS: Thirteen compounds were identified as GPR35 agonists, including licochalcone B, isoliquiritigenin, etc. Licochalcone B, isoliquiritigenin and alisol A exhibited bradykinin receptor B2 antagonism activities. Atractyline and shogaol showed as a cannabinoid receptor CB2 agonist and a histamine receptor H1 antagonist, respectively. Tectorigenin and aristofone acted as muscarinic receptor M3 antagonists, while synephrine, ephedrine and pseudoephedrine were ß2-adrenoceptor agonists. Pathway deconvolution assays suggested activation of GPR35 triggered PI3K, MEK, JNK pathways and EGFR transactivation, and the activation of ß2-adrenoceptor mediated MEK and Ca2+. The herb-compound-target network analysis found that some compounds such as licochalcone B acted on multiple targets, and multiple components interacted with the same target such as GPR35, reflecting the synergistic mechanism of Chinese medicine. At the same time, some low-abundance compounds displayed high target activity, meaning its important role in LCDD for anti-COVID-19. CONCLUSIONS: This study elucidates the active ingredients, targets and pathways of LCDD. This is useful for elucidating multitarget synergistic action for its clinical therapeutic efficacy.


Subject(s)
Biosensing Techniques/methods , COVID-19/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Cell Line, Tumor , Chalcones/pharmacology , Cricetulus , Drugs, Chinese Herbal/analysis , Ephedrine/pharmacology , HEK293 Cells , Humans , Immunity/drug effects , Inflammation/metabolism , Lung Diseases/metabolism , Muscle, Smooth/drug effects , Receptors, G-Protein-Coupled/metabolism , Respiration/drug effects , Signal Transduction/drug effects
8.
Front Immunol ; 12: 709861, 2021.
Article in English | MEDLINE | ID: covidwho-1394760

ABSTRACT

BACKGROUND: Immune hyperactivity is an important contributing factor to the morbidity and mortality of COVID-19 infection. Nasal administration of anti-CD3 monoclonal antibody downregulates hyperactive immune responses in animal models of autoimmunity through its immunomodulatory properties. We performed a randomized pilot study of fully-human nasal anti-CD3 (Foralumab) in patients with mild to moderate COVID-19 to determine if its immunomodulatory properties had ameliorating effects on disease. METHODS: Thirty-nine outpatients with mild to moderate COVID-19 were recruited at Santa Casa de Misericordia de Santos in Sao Paulo State, Brazil. Patients were randomized to three cohorts: 1) Control, no Foralumab (n=16); 2) Nasal Foralumab (100ug/day) given for 10 consecutive days with 6 mg dexamethasone given on days 1-3 (n=11); and 3) Nasal Foralumab alone (100ug/day) given for 10 consecutive days (n=12). Patients continued standard of care medication. RESULTS: We observed reduction of serum IL-6 and C-reactive protein in Foralumab alone vs. untreated or Foralumab/Dexa treated patients. More rapid clearance of lung infiltrates as measured by chest CT was observed in Foralumab and Foralumab/Dexa treated subjects vs. those that did not receive Foralumab. Foralumab treatment was well-tolerated with no severe adverse events. CONCLUSIONS: This pilot study suggests that nasal Foralumab is well tolerated and may be of benefit in treatment of immune hyperactivity and lung involvement in COVID-19 disease and that further studies are warranted.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Pneumonia/therapy , Administration, Intranasal , Adolescent , Adult , Antibodies, Monoclonal/administration & dosage , Biomarkers , C-Reactive Protein/analysis , COVID-19/physiopathology , COVID-19/therapy , Cohort Studies , Female , Humans , Immunity/drug effects , Interleukin-6/blood , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Middle Aged , Outpatients/statistics & numerical data , Pilot Projects , Pneumonia/prevention & control , Young Adult
9.
Bioorg Med Chem ; 46: 116356, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1347508

ABSTRACT

The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.


Subject(s)
Antiviral Agents/pharmacology , Positive-Strand RNA Viruses/drug effects , Animals , Cytokines/metabolism , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/physiology , Glycosylation/drug effects , Humans , Immunity/drug effects , Immunity/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/physiology , Polyamines/metabolism , Positive-Strand RNA Viruses/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Ubiquitination/drug effects , Ubiquitination/physiology
10.
PLoS One ; 16(8): e0255335, 2021.
Article in English | MEDLINE | ID: covidwho-1341502

ABSTRACT

The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglandin-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.


Subject(s)
COVID-19/pathology , Dinoprostone/blood , Immunity , Adolescent , Adult , Animals , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Cells, Cultured , Chlorocebus aethiops , Dinoprostone/pharmacology , Dinoprostone/physiology , Disease Progression , Female , Humans , Immunity/drug effects , Immunity/physiology , Male , Middle Aged , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Vero Cells , Young Adult
12.
Front Immunol ; 12: 711915, 2021.
Article in English | MEDLINE | ID: covidwho-1317228

ABSTRACT

Passive antibody therapy has been used to treat outbreaks of viral disease, including the ongoing pandemic of severe respiratory acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) or COVID-19. However, the real benefits of the procedure are unclear. We infused a concentrated solution of neutralizing anti-SARS-CoV-2 antibodies obtained from a convalescent donor with a single session of double filtration plasmapheresis (DFPP) into a 56-year-old woman with long history of unremitting, severe COVID-19. She was unable to establish an adequate antiviral immune response because of previous chemotherapy, including the infusion of the anti-CD20 monoclonal antibody rituximab, administered to treat a diffuse large B-cell lymphoma. The disease promptly recovered despite evidence of no endogenous anti-SARS-CoV-2 antibody production. The observation that passive antibody therapy might prove particularly effective in immunodepressed COVID-19 patients requires evaluation in prospective randomized controlled trial.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Immunization, Passive/methods , Immunocompromised Host , Immunoglobulin G/therapeutic use , Plasmapheresis/methods , SARS-CoV-2/genetics , Antineoplastic Agents, Immunological/adverse effects , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunity/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Middle Aged , RNA, Viral/genetics , Rituximab/adverse effects , Treatment Outcome
13.
Nat Rev Immunol ; 21(8): 475-484, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294475

ABSTRACT

Most COVID-19 vaccines are designed to elicit immune responses, ideally neutralizing antibodies (NAbs), against the SARS-CoV-2 spike protein. Several vaccines, including mRNA, adenoviral-vectored, protein subunit and whole-cell inactivated virus vaccines, have now reported efficacy in phase III trials and have received emergency approval in many countries. The two mRNA vaccines approved to date show efficacy even after only one dose, when non-NAbs and moderate T helper 1 cell responses are detectable, but almost no NAbs. After a single dose, the adenovirus vaccines elicit polyfunctional antibodies that are capable of mediating virus neutralization and of driving other antibody-dependent effector functions, as well as potent T cell responses. These data suggest that protection may require low levels of NAbs and might involve other immune effector mechanisms including non-NAbs, T cells and innate immune mechanisms. Identifying the mechanisms of protection as well as correlates of protection is crucially important to inform further vaccine development and guide the use of licensed COVID-19 vaccines worldwide.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Humans , Immunity/drug effects , Immunity/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
14.
Aging (Albany NY) ; 13(12): 15785-15800, 2021 06 27.
Article in English | MEDLINE | ID: covidwho-1285613

ABSTRACT

Recent reports indicate that patients with hepatocholangiocarcinoma (CHOL) have a higher morbidity and mortality rate for coronavirus disease (COVID-19). Anti-CHOL/COVID-19 medicines are inexistent. Vitamin A (VA) refers to a potent nutrient with anti-cytotoxic and anti-inflammatory actions. Therefore, this study aimed to determine the potential functions and molecular mechanisms of VA as a potential treatment for patients with both CHOL and COVID-19 (CHOL/COVID-19). The transcriptome data of CHOL patients were obtained from the Cancer Genome Analysis database. Furthermore, the network pharmacology approach and bioinformatics analysis were used to identify and reveal the molecular functions, therapeutic biotargets, and signaling of VA against CHOL/COVID-19. First, clinical findings identified the medical characteristics of CHOL patients with COVID-19, such as susceptibility gene, prognosis, recurrence, and survival rate. Anti-viral and anti-inflammatory pathways, and immunopotentiation were found as potential targets of VA against CHOL/COVID-19. These findings illustrated that VA may contribute to the clinical management of CHOL/COVID-19 achieved by induction of cell repair, suppression of oxidative stress and inflammatory reaction, and amelioration of immunity. Nine vital therapeutic targets (BRD2, NOS2, GPT, MAPK1, CXCR3, ICAM1, CDK4, CAT, and TMPRSS13) of VA against CHOL/COVID-19 were identified. For the first time, the potential pharmacological biotargets, function, and mechanism of action of VA in CHOL/COVID-19 were elucidated.


Subject(s)
COVID-19/drug therapy , Immunity/drug effects , SARS-CoV-2/drug effects , Vitamin A/pharmacology , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Computational Biology , Female , Humans , Inflammation/drug therapy , Inflammation/etiology , Liver Neoplasms/genetics , Male , Molecular Docking Simulation , Proportional Hazards Models , Signal Transduction/drug effects
15.
Mar Drugs ; 19(5)2021 May 11.
Article in English | MEDLINE | ID: covidwho-1256603

ABSTRACT

Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1ß and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).


Subject(s)
Cytokine Release Syndrome/drug therapy , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Pigments, Biological/pharmacology , Pigments, Biological/therapeutic use , Sea Urchins/chemistry , Animals , Cytokine Release Syndrome/metabolism , Humans , Immunity/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
16.
J Infect Dis ; 223(8): 1339-1344, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1203701

ABSTRACT

Coronavirus disease 2019 (COVID-19) outcomes are linked to host immune responses and may be affected by antiviral therapy. We investigated antibody and cytokine responses in ACTT-1 study participants enrolled at our center. We studied serum specimens from 19 hospitalized adults with COVID-19 randomized to treatment with remdesivir or placebo. We assessed severe acute respiratory syndrome coronavirus 2 antibody responses and identified cytokine signatures, using hierarchical clustering. We identified no clear immunologic trends attributable to remdesivir treatment. Seven participants were initially seronegative at study enrollment, and all 4 deaths occurred in this group with more recent symptom onset. We identified 3 dominant cytokine signatures, demonstrating different disease trajectories.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Immunity/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/immunology , Adenosine Monophosphate/therapeutic use , Adult , Alanine/analogs & derivatives , Alanine/immunology , Alanine/therapeutic use , Antibodies, Viral/immunology , Antiviral Agents/immunology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Cytokines/immunology , Female , Humans , Immunity/drug effects , Male , SARS-CoV-2/drug effects , SARS-CoV-2/immunology
17.
Nutrients ; 13(4)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1200157

ABSTRACT

The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.


Subject(s)
Fungal Polysaccharides/administration & dosage , Immunity/drug effects , Immunomodulation , beta-Glucans/administration & dosage , Adolescent , Adult , Agaricales/chemistry , Aged , Animals , COVID-19/therapy , Diet , Dietary Supplements , Female , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/immunology , Fungi/chemistry , Fungi/immunology , Humans , Immune System/drug effects , Infant , Infant, Newborn , Male , Middle Aged , Pleurotus/chemistry , SARS-CoV-2 , Saccharomyces cerevisiae/chemistry , Young Adult , beta-Glucans/chemistry , beta-Glucans/immunology
18.
Int J Biol Macromol ; 181: 462-470, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1157350

ABSTRACT

The emergence of the novel coronavirus, SARS-CoV-2 has pushed forward the world to experience the first pandemic of this century. Any specific drug against this RNA virus is yet to be discovered and presently, the COVID-19 infected patients are being treated symptomatically. During the last few decades, a number of polysaccharides with potential biological activities have been invented from Indian medicinal plants. Many polysaccharides, such as sulfated xylomannan, xylan, pectins, fucoidans, glucans, glucoarabinan, and arabinoxylan from Indian medicinal plants, have been shown to exhibit antiviral and immunomodulating activities. Plant polysaccharides exhibit antiviral activities through interference with the viral life cycle and inhibition of attachment of virus to host cell. Intake of certain immune stimulating plant polysaccharides may also protect from the virus to a certain extent. In process of continuous search for most potent drug, Indian plant polysaccharides may emerge as significant biomaterial to combat COVID-19. This review explores a number of polysaccharides from Indian medicinal plants which showed antiviral and immunomodulating activities. It is aimed to provide an overview about the composition, molecular mass, branching configuration and related bioactivities of polysaccharides which is crucial for their classification as possible drug to induce immune response in viral diseases.


Subject(s)
COVID-19/drug therapy , Polysaccharides/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , Humans , Immunity/drug effects , India/epidemiology , Pandemics , Plant Extracts/immunology , Plant Extracts/pharmacology , Plants, Medicinal/metabolism , Polysaccharides/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
19.
Food Chem Toxicol ; 149: 112007, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1139498

ABSTRACT

Consistent gathering of immunotoxic substances on earth is a serious global issue affecting people under pathogenic stress. Organophosphates are among such hazardous compounds that are ubiquitous in nature. They fuel oxidative stress to impair antiviral immune response in living entities. Aside, organophosphates promote cytokine burst and pyroptosis in broncho-alveolar chambers leading to severe respiratory ailments. At present, we witness COVID-19 outbreak caused by SARS-CoV-2. Infection triggers cytokine storm coupled with inflammatory manifestations and pulmonary disorders in patients. Since organophosphate-exposure promotes necroinflammation and respiratory troubles hence during current pandemic situation, additional exposure to such chemicals can exacerbate inflammatory outcome and pulmonary maladies in patients, or pre-exposure to organophosphates might turn-out to be a risk factor for compromised immunity. Fortunately, antioxidants alleviate organophosphate-induced immunosuppression and hence under co-exposure circumstances, dietary intake of antioxidants would be beneficial to boost immunity against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Environmental Exposure/adverse effects , Immunity/drug effects , Inflammation/etiology , Organophosphates/adverse effects , Oxidative Stress/drug effects , SARS-CoV-2/pathogenicity , Animals , Antioxidants/therapeutic use , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/prevention & control , Pandemics , Pesticides/adverse effects , Pyroptosis , Respiratory Tract Diseases/etiology , Virulence/drug effects
20.
J Clin Pharmacol ; 61(8): 987-1000, 2021 08.
Article in English | MEDLINE | ID: covidwho-1103313

ABSTRACT

Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), numerous research has been undertaken to delineate the various effects of the virus which manifests in many ways all over the body. The association between the SARS-CoV-2 invasion mechanism and the renin-angiotensin-aldosterone system (RAAS) receptors, created many debates about the possible consequences of using RAAS-modulating drugs including angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARBs) during the pandemic. Many clinical studies were conducted to assess the outcomes of coronavirus disease 2019 (COVID-19) in patients who use ACEi/ARBs following the arguments claiming to discontinue these drugs as a precautionary measure. Although several studies mainly analyzed the outcomes of the disease, this review aimed to compare specific blood markers in both groups of COVID-19 patients to gain better insight into the interaction of ACEi/ARBs with different body functions during the infection. Several databases were searched using a combination of keywords followed by screening and data extraction. Only 28 studies met our inclusion criteria, the majority of which showed no significant difference between the inflammation markers of COVID-19 patients who used or did not use ACEi/ARBs. Interestingly, 6 studies reported lower inflammatory markers in COVID-19 patients who used ACEi/ARBs, and 6 studies reported better outcomes among the same group. We therefore concluded that the use of ACEi/ARBs may not lead to worse prognosis of COVID-19 and may even play a protective role against the hyperinflammatory response associated with COVID-19.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19 , Immunity , Renin-Angiotensin System/immunology , SARS-CoV-2/physiology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/metabolism , Humans , Immunity/drug effects , Immunity/physiology , Prognosis , Protective Factors
SELECTION OF CITATIONS
SEARCH DETAIL