Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Anal Bioanal Chem ; 413(22): 5619-5632, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2174032

ABSTRACT

In the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance. Graphical abstract.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immune Sera , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Luminescent Measurements , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors
2.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(9): 489-494, 2022 11.
Article in English | MEDLINE | ID: covidwho-2130666

ABSTRACT

INTRODUCTION: In order to deal with the current pandemic caused by the novel SARS-CoV-2 coronavirus several serological immunoassays have been recently developed with the objective of being used as a complementary diagnostic tool and to support the RT-PCR technique currently considered the "gold-standard" method. However, these new assays need to be evaluated and validated. The purpose of this study was to assess the performance of five immunoassays (two ELISA and three CLIA assays) and one rapid immunochromatographic test for the detection of anti-SARS-CoV-2 antibodies. METHODS: Five semiquantitative immunoassays (MENARINI®, PALEX®, VIRCLIA®, ROCHE® and SIEMENS®) and one lateral flow rapid test (WONDFO®) were performed. A total of 124 samples were studied. Case serum samples (n=78) were obtained from COVID-19 patients confirmed by real-time RT-PCR/epidemiological-clinical-radiological criteria, and control non-SARS-CoV-2 samples (n=46) belonged to healthy healthcare workers involved in a seroprevalence study. RESULTS: Overall, the tests showed sensitivities around 70-90% and specificities greater than 95%, including the immunochromatographic test. In addition, we observed very good agreements among them, being better for the detection of IgG than for IgM antibodies (Cohen's kappa index of 0.95 for VIRCLIA® IgG with ROCHE®), as well as good diagnostic power of the tests as determined by the ROC curves. CONCLUSIONS: This study demonstrates the proper performance of the different immunoassays in order to be applied in the clinical practice as support in the diagnostic approach and in the development of vaccines and seroepidemiological studies of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Seroepidemiologic Studies , Immunoglobulin G , Sensitivity and Specificity , Antibodies, Viral , Immunoassay/methods , Chromatography, Affinity
3.
Anal Chem ; 94(47): 16436-16442, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2116713

ABSTRACT

Label-free electrochemiluminescence (ECL) immunoassays (lf-ECLIA), based on biomarker-induced ECL signal changes, have attracted increasing attention due to the simple, rapid, and low-cost detection of biomarkers without secondary antibodies and complicated labeling procedures. However, the interaction rule and mechanism between analytical interfaces and biomarkers have rarely been explored. Herein, the interactions between biomarkers and analytical interfaces constructed by assembly of a nanoluminophore and antibody-functionalized gold nanoparticles on an indium tin oxide electrode were studied. The nanoluminophore was synthesized by mixing Cu2+/l-cysteine chelate and N-(4-Aminobutyl)-N-ethylisoluminol-bifunctionalized gold nanoparticles with chitosan. It was found that positively charged biomarkers increased the ECL intensity, whereas negatively charged biomarkers decreased the ECL intensity. The assembly pH influenced the biomarker charges, which determined the ECL enhancement or inhibition. The detection pH only affected the ECL intensity but not the ECL changing trends. Based on the ECL signal changes, a charge-dependent lf-ECLIA was established, which exhibited inhibition responses to negatively charged human immunoglobulin G and copeptin and enhancement responses to positively charged cardiac troponin I, heart-type fatty acid binding protein, brain natriuretic peptide, and SARS-CoV-2 N protein. The linear range was 0.1-1000 pg/mL, and the detection limits were distributed in 0.024-0.091 pg/mL. Besides, a mechanism of the charge-dependent ECL enhancement and inhibition effects is proposed, which is very important for the development of new lf-ECLIA methodologies.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Gold , Luminescent Measurements/methods , Biosensing Techniques/methods , SARS-CoV-2 , Immunoassay/methods , Biomarkers , Electrochemical Techniques/methods , Limit of Detection
4.
Rev Inst Med Trop Sao Paulo ; 64: e63, 2022.
Article in English | MEDLINE | ID: covidwho-2109458

ABSTRACT

COVID-19 disease is spread worldwide and diagnostic techniques have been studied in order to contain the pandemic. Immunochromatographic (IC) assays are feasible and a low-cost alternative especially in low and middle-income countries, which lack structure to perform certain diagnostic techniques. Here we evaluate the sensitivity and specificity of eleven different IC tests in 145 serum samples from confirmed cases of COVID-19 using RT-PCR and 100 negative serum samples from blood donors collected in February 2019. We also evaluated the cross-reactivity with dengue using 20 serum samples from patients with confirmed diagnosis for dengue collected in early 2019 through four different tests. We found high sensitivity (92%), specificity (100%) and an almost perfect agreement (Kappa 0.92) of IC assay, especially when we evaluated IgG and IgM combined after 10 days from the onset of symptoms with RT-PCR. However, we detected cross-reactivity between dengue and COVID-19 mainly with IgM antibodies (5 to 20% of cross-reaction) and demonstrated the need for better studies about diagnostic techniques for these diseases.


Subject(s)
COVID-19 , Dengue , Antibodies, Viral , COVID-19/diagnosis , Dengue/diagnosis , Humans , Immunoassay/methods , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity
5.
BMC Infect Dis ; 22(1): 810, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2098319

ABSTRACT

BACKGROUND: There is limited information to compare the qualitative and semi-quantitative performance of rapid diagnostic tests (RDT) and serology for the assessment of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, the objective of the study was (a) to compare the efficacy of SARS-CoV-2 antibody detection between RDT and laboratory serology, trying to identify appropriate semi-quantitative cut-offs for RDT in relation with quantitative serology values and to (b) evaluate diagnostic accuracy of RDT compared to the NAAT gold standard in an unselected adult population. METHODS: SARS-CoV-2 antibodies were simultaneously measured with lateral flow immunochromatographic assays (LFA), the Cellex qSARS-CoV-2 IgG/IgM Rapid Test (by capillary blood), the iFlash-SARS-CoV-2 IgG/IgM chemiluminescent immunoassay (CLIA) (by venous blood) and the nucleic acid amplification test (NAAT) in samples from in- and out-patients with confirmed, suspected and negative diagnosis of coronavirus disease 2019 (COVID-19) attending Udine Hospital (Italy) (March-May 2020). Interpretation of RDT was qualitative (positive/negative) and semi-quantitative based on a chromatographic intensity scale (negative, weak positive, positive). RESULTS: Overall, 720 paired antibody measures were performed on 858 patients. The qualitative and semiquantitative agreement analysis performed in the whole sample between LFA and CLIA provided a Kendall's tau of 0.578 (p < 0.001) and of 0.623 (p < 0.001), respectively, for IgM and IgG. In patients with a diagnosis of COVID-19, accordance between LFA and CLIA was maintained as a function of time from the onset of COVID-19 disease and the severity of disease both for qualitative and semi-quantitative assessments. RDT compared to the NAAT gold standard in 858 patients showed 78.5% sensitivity (95% CI 75.1%-81.7%) and 94.1% specificity (95% CI 90.4%-96.8%), with variable accordance depending on the timing from symptom onset. CONCLUSION: The RDT used in our study can be a non-invasive and reliable alternative to serological tests and facilitate both qualitative and a semi-quantitative antibody detection in COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/diagnosis , Prospective Studies , Immunoglobulin M , Sensitivity and Specificity , Antibodies, Viral , Immunoglobulin G , Immunoassay/methods
6.
ACS Appl Mater Interfaces ; 14(43): 48464-48475, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2087121

ABSTRACT

Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.


Subject(s)
Aptamers, Peptide , Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Cytokines/analysis , Interleukin-6 , Immunoassay/methods , Inflammation
7.
Anal Chem ; 94(43): 15155-15161, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2076960

ABSTRACT

Large-scale, rapid, and inexpensive serological diagnoses of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are of great interest in reducing virus transmission at the population level; however, their development is greatly plagued by the lack of available point-of-care methods, leading to low detection efficiency. Herein, an ultrasensitive smartphone-based electrochemical immunoassay is reported for rapid (less than 5 min), low-cost, easy-to-implement detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 N protein). Specifically, the electrochemical immunoassay was fabricated on a screen-printed carbon electrode coated with electrodeposited gold nanoparticles, followed by incubation of anti-N antibody (Ab) and bovine serum albumin as the working electrode. Accompanied by the antigen-antibody reaction between the SARS-CoV-2 N protein and the Ab, the electron transfer between the electroactive species [Fe(CN)6]3-/4- and the electrode surface is disturbed, resulting in reduced square-wave voltammetry currents at 0.075 V versus the Ag/AgCl reference electrode. The proposed immunoassay provided a good linear range with SARS-CoV-2 N protein concentrations within the scope of 0.01-1000 ng/mL (R2 = 0.9992) and the limit of detection down to 2.6 pg/mL. Moreover, the detection data are wirelessly transmitted to the interface of the smartphone, and the corresponding SARS-CoV-2 N protein concentration value is calculated and displayed. Therefore, the proposed portable detection mode offers great potential for self-differential diagnosis of residents, which will greatly facilitate the effective control and large-scale screening of virus transmission in resource-limited areas.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , Gold , Point-of-Care Systems , Smartphone , COVID-19/diagnosis , Immunoassay/methods , Biosensing Techniques/methods
8.
Anal Chim Acta ; 1234: 340522, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2068604

ABSTRACT

At the end of 2019, the novel coronavirus disease 2019 (COVID-19), a cluster of atypical pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been known as a highly contagious disease. Herein, we report the MXene/P-BiOCl/Ru(bpy)32+ heterojunction composite to construct an electrochemiluminescence (ECL) immunosensor for SARS-CoV-2 nucleocapsid protein (CoVNP) determination. Two-dimensional (2D) material ultrathin phosphorus-doped bismuth oxychloride (P-BiOCl) is exploited and first applied in ECL. 2D architectures MXene not only act as "soft substrate" to improve the properties of P-BiOCl, but also synergistically work with P-BiOCl. Owing to the inimitable set of bulk and interfacial properties, intrinsic high electrochemical conductivity, hydrophilicity and good biocompatible of 2D/2D MXene/P-BiOCl/Ru(bpy)32+, this as-exploited heterojunction composite is an efficient signal amplifier and co-reaction accelerator in the presence of tri-n-propylamine (TPA) as a coreactant. The proposed MXene/P-BiOCl/Ru(bpy)32+-TPA system exhibits a high and stable ECL signal and achieves ECL emission quenching for "signal on-off" recognition of CoVNP. Fascinatingly, the constructed ECL biosensor towards CoVNP allows a wide linear concentration range from 1 fg/mL to 10 ng/mL and a low limit of detection (LOD) of 0.49 fg/mL (S/N = 3). Furthermore, this presented strategy sheds light on designing a highly efficient ECL nanostructure through the combination of 2D MXene architectures with 2D semiconductor materials in the field of nanomedicine. This ECL biosensor can successfully detect CoVNP in human serum, which can promote the prosperity and development of diagnostic methods of SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Biosensing Techniques/methods , Bismuth , COVID-19/diagnosis , Electrochemical Techniques/methods , Immunoassay/methods , Luminescent Measurements/methods , Nucleocapsid Proteins , SARS-CoV-2
9.
Sensors (Basel) ; 22(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066350

ABSTRACT

Due to the recent pandemic caused by coronavirus disease 2019 (COVID-19), the lateral flow immunoassay used for its rapid antigen test is more popular than ever before. However, the history of the lateral flow immunoassay is about 60 years old, and its original purpose of use, such as a COVID-19 rapid antigen test or a pregnancy test, was the qualitative detection of a target analyte. Recently, the demand for quantitative analysis of lateral flow immunoassays is increasing in various fields. Lateral flow immunoassays for quantitative detection using various materials and sensor technologies are being introduced, and readers for analyzing them are being developed. Quantitative analysis readers are highly anticipated for their future development in line with technological advancements such as optical, magnetic field, photothermal, and electrochemical sensors and trends such as weight reduction, miniaturization, and cost reduction of systems. In addition, the sensing, processing, and communication functions of portable personal devices such as smartphones can be used as tools for the quantitative analysis of lateral flow immunoassays. As a result, lateral flow immunoassays can efficiently achieve the goal of rapid diagnosis by point-of-care testing. Readers used for the quantification of lateral flow immunoassays were classified according to the adopted sensor technology, and the research trends in each were reviewed in this paper. The development of a quantitative analysis system was often carried out in the assay aspect, so not only the readers but also the assay development cases were reviewed if necessary. In addition, systems for quantitative analysis of COVID-19, which have recently been gaining importance, were introduced as a separate section.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Immunoassay/methods , Immunologic Tests , Middle Aged , Miniaturization , Point-of-Care Systems , Point-of-Care Testing
10.
Anal Chim Acta ; 1233: 340486, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2060277

ABSTRACT

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Polyethyleneimine , COVID-19/diagnosis , Immunoassay/methods , Magnetic Phenomena
11.
ACS Appl Mater Interfaces ; 14(40): 45189-45200, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2050254

ABSTRACT

The worldwide spread of coronavirus disease 2019 (COVID-19) highlights the need for rapid, simple, and accurate tests to detect various variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antigen test, based on the lateral flow immunoassay (LFI), is a suitable "first line of defense" test that enables early identification and timely isolation of patients to minimize viral transmission among communities. However, it is generally less accurate than nucleic acid testing, and its sensitivity needs improvement. Here, a novel rapid detection method is designed to sensitively detect SARS-CoV-2 using isolated gold nanoparticle (AuNP)-assembled SiO2 core-satellite nanoparticles (SiO2@Au CSNPs). Well-grown AuNP satellites in the synthesis of SiO2@Au CSNPs significantly enhanced their light absorption, increased the detection sensitivity, and lowered the detection limit by 2 orders of magnitude relative to conventional gold colloids. The proposed system enabled highly sensitive detection of the SARS-CoV-2 nucleocapsid protein with a detection limit of 0.24 pg mL-1 within 20 min. This is the first study to develop a highly sensitive antigen test using the absorption-modulated SiO2@Au CSNPs. Our findings demonstrate the capacity of this platform to serve as an effective sensing strategy for managing pandemic conditions and preventing the spread of viral infections.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nucleic Acids , COVID-19/diagnosis , Colloids , Gold , Humans , Immunoassay/methods , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
12.
Biosens Bioelectron ; 218: 114737, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2041594

ABSTRACT

Lateral flow immunoassays (LFIA) have a plethora of applications in health, environmental and food sectors for low-cost, simple, and rapid point-of-need testing. Typically, the user only needs to add the sample without any other intervention from sample application to results. A compelling challenge, and a constant pursuit in LFIA is to improve the assay sensitivity without compromising the simplicity and practicality. We report that the addition of water-soluble macromolecular crowding agents leads to an enhancement of the sensitivity, which is attributed to the fact that the exposure of antibodies and micro/nanoparticle conjugates to macromolecularly crowded environment, while migrating through the confining pores of the strip-pads by capillary forces, promotes the interactions that are responsible for analyte recognition and signal generation. The effect was shown by using two of the most widely established LFIA tests worldwide, that is, detection of nucleocapsid protein from SARS-CoV-2 associated with COVID-19 and detection of Strep-A antigen from Streptococcus pyogenes associated with pharyngitis. For immediate demonstration of the sensitivity enhancement, we worked directly on commercially available devices already optimized in terms of reagents and conditions. Of the crowders used, ficoll, Mr 400000, and ficoll, Mr 70000, gave a 5-10-fold improvement of the signal without affecting the background. Because the addition of macromolecular crowding agents is complementary to other strategies of sensitivity enhancement, such as the design of novel labels and the introduction of signal amplification, we anticipate that the proposed modulation will be extended to numerous analytes with a variety of reporters and LFIA configurations.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Ficoll , Immunoassay/methods , Nucleocapsid Proteins , Water , Sensitivity and Specificity
13.
Rev Inst Med Trop Sao Paulo ; 64: e49, 2022.
Article in English | MEDLINE | ID: covidwho-2039513

ABSTRACT

This study assessed the technical performance of a rapid lateral flow immunochromatographic assay (LFIA) for the detection of anti-SARS-CoV-2 IgG and compared LFIA results with chemiluminescent immunoassay (CLIA) results and an in-house enzyme immunoassay (EIA). To this end, a total of 216 whole blood or serum samples from three groups were analyzed: the first group was composed of 68 true negative cases corresponding to blood bank donors, healthy young volunteers, and eight pediatric patients diagnosed with other coronavirus infections. The serum samples from these participants were obtained and stored in a pre-COVID-19 period, thus they were not expected to have COVID-19. In the second group of true positive cases, we chose to replace natural cases of COVID-19 by 96 participants who were expected to have produced anti-SARS-CoV-2 IgG antibodies 30-60 days after the vaccine booster dose. The serum samples were collected on the same day that LFIA were tested either by EIA or CLIA. The third study group was composed of 52 participants (12 adults and 40 children) who did or did not have anti-SARS-CoV-2 IgG antibodies due to specific clinical scenarios. The 12 adults had been vaccinated more than seven months before LFIA testing, and the 40 children had non-severe COVID-19 diagnosed using RT-PCR during the acute phase of infection. They were referred for outpatient follow-up and during this period the serum samples were collected and tested by CLIA and LFIA. All tests were performed by the same healthcare operator and there was no variation of LFIA results when tests were performed on finger prick whole blood or serum samples, so that results were grouped for analysis. LFIA's sensitivity in detecting anti-SARS-CoV-2 IgG antibodies was 90%, specificity 97.6%, efficiency 93%, PPV 98.3%, NPV 86.6%, and likelihood ratio for a positive or a negative result were 37.5 and 0.01 respectively. There was a good agreement (Kappa index of 0.677) between LFIA results and serological (EIA or CLIA) results. In conclusion, LFIA analyzed in this study showed a good technical performance and agreement with reference serological assays (EIA or CLIA), therefore it can be recommended for use in the outpatient follow-up of non-severe cases of COVID-19 and to assess anti-SARS-CoV-2 IgG antibody production induced by vaccination and the antibodies decrease over time. However, LFIAs should be confirmed by using reference serological assays whenever possible.


Subject(s)
COVID-19 , Adult , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Child , Follow-Up Studies , Humans , Immunoassay/methods , Immunoglobulin G , Immunoglobulin M , Outpatients , Sensitivity and Specificity , Vaccination
14.
Microbiol Spectr ; 10(5): e0246822, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2038254

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine coverage remains incomplete, being only 15% in low-income countries. Rapid point-of-care tests predicting SARS-CoV-2 infection susceptibility in the unvaccinated may assist in risk management and vaccine prioritization. We conducted a prospective cohort study in 2,826 participants working in hospitals and Fire and Police services in England, UK, during the pandemic (ISRCTN5660922). Plasma taken at recruitment in June 2020 was tested using four lateral flow immunoassay (LFIA) devices and two laboratory immunoassays detecting antibodies against SARS-CoV-2 (UK Rapid Test Consortium's AbC-19 rapid test, OrientGene COVID IgG/IgM rapid test cassette, SureScreen COVID-19 rapid test cassette, and Biomerica COVID-19 IgG/IgM rapid test; Roche N and Euroimmun S laboratory assays). We monitored participants for microbiologically confirmed SARS-CoV-2 infection for 200 days. We estimated associations between test results at baseline and subsequent infection, using Poisson regression models adjusted for baseline demographic risk factors for SARS-CoV-2 exposure. Positive IgG results on each of the four LFIAs were associated with lower rates of subsequent infection with adjusted incidence rate ratios (aIRRs) of 0.00 (95% confidence interval, 0.00 to 0.01), 0.03 (0.02 to 0.05), 0.07 (0.05 to 0.10), and 0.09 (0.07 to 0.12), respectively. The protective association was strongest for AbC-19 and SureScreen. The aIRR for the laboratory Roche N antibody assay at the manufacturer-recommended threshold was similar to those of the two best performing LFIAs at 0.03 (0.01 to 0.10). Lateral flow devices measuring SARS-CoV-2 IgG predicted disease risk in unvaccinated individuals over a 200-day follow-up. The association of some LFIAs with subsequent infection was similar to laboratory immunoassays. IMPORTANCE Previous research has demonstrated an association between the detection of antibodies to SARS-CoV-2 following natural infection and protection from subsequent symptomatic SARS-CoV-2 infection. Lateral flow immunoassays (LFIAs) detecting anti-SARS-CoV-2 IgG are a cheap, readily deployed technology that has been used on a large scale in population screening programs, yet no studies have investigated whether LFIA results are associated with subsequent SARS-CoV-2 infection. In a prospective cohort study of 2,826 United Kingdom key workers, we found positivity in lateral flow test results had a strong negative association with subsequent SARS-CoV-2 infection within 200 days in an unvaccinated population. Positivity on more-specific but less-sensitive tests was associated with a markedly decreased rate of disease; protection associated with testing positive using more sensitive devices detecting lower levels of anti-SARS-CoV-2 IgG was more modest. Lateral flow tests with high specificity may have a role in estimation of SARS-CoV-2 disease risk in unvaccinated populations.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Prospective Studies , Sensitivity and Specificity , Antibodies, Viral , Immunoassay/methods , Immunoglobulin G , Immunoglobulin M
15.
Biomaterials ; 288: 121694, 2022 09.
Article in English | MEDLINE | ID: covidwho-2035793

ABSTRACT

The level of anti-SARS-CoV-2 neutralizing antibodies (NAb) is an indispensable reference for evaluating the acquired protective immunity against SARS-CoV-2. Here, we established an ultrabright nanoparticles-based lateral flow immunoassay (LFIA) for one-step rapid semi-quantitative detection of anti-SARS-CoV-2 NAb in vaccinee's serum. Once embedded in polystyrene (PS) nanoparticles, the aggregation-induced emission (AIE) luminogen, AIE490, exhibited ultrabright fluorescence due to the rigidity of PS and severe inhibition of intramolecular motions. The ultrabright AIE490-PS nanoparticle was used as a fluorescent marker of LFIA. Upon optimized conditions including incubation time, concentrations of coated proteins and conjugated nanoparticles, amounts of antigens modified on the surface of nanoparticles, dilution rate of serum samples, and so on, the ultrabright nanoparticles-based LFIA could accurately identify 70 negative samples and 63 positive samples from human serum (p < 0.0001). The intra- and inter-assay precisions of the established method are above 13% and 16%, respectively. The established LFIA has tremendous practical value of generalization as a rapid semi-quantitative detection method of anti-SARS-CoV-2 NAb. Meanwhile, the AIE490-PS nanoparticle is also promising to detect many other analytes by altering the protein on the surface.


Subject(s)
COVID-19 , Nanoparticles , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay/methods , SARS-CoV-2
16.
Anal Chim Acta ; 1230: 340389, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2031061

ABSTRACT

SARS-CoV-2 viruses, responsible for the COVID-19 pandemic, continues to evolve into new mutations, which poses a significant threat to public health. Current testing methods have some limitations, such as long turnaround times, high costs, and professional laboratory requirements. In this report, the novel Spin-Enhanced Lateral Flow Immunoassay (SELFIA) platform and fluorescent nanodiamond (FND) reporter were utilized for the rapid detection of SARS-CoV-2 nucleocapsid and spike antigens from different variants, including wild-type (Wuhan-1), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529). The SARS-CoV-2 antibodies were conjugated with FND via nonspecific binding, enabling the detection of SARS-CoV-2 antigens via both direct and competitive SELFIA format. Direct SELFIA was performed by directly adding the SARS-CoV-2 antibodies-conjugated FND on the antigens-immobilized nitrocellulose (NC) membrane. Conversely, the SARS-CoV-2 antigen-containing sample was first incubated with the antibodies-conjugated FND, and then dropped on the antigen-immobilized NC membrane to carry out the competitive SELFIA. The results suggested that S44F anti-S IgG antibody can be efficiently used for the detection of wild-type, Alpha, Delta, and Omicron variants spike antigens. Findings were comparable in direct SELFIA, competitive SELFIA, and ELISA. A detection limit of 1.94, 0.77, 1.14, 1.91, and 1.68 ng/mL can be achieved for SARS-CoV-2 N protein, wild-type, Alpha, Delta, and Omicron S proteins, respectively, via competitive SELFIA assay. These results suggest that a direct SELFIA assay can be used for antibody/antigen pair screening in diagnosis development, while the competitive SELFIA assay can serve as an accurate quantitative diagnostic tool. The simplicity and rapidity of the SELFIA platform were demonstrated, which can be leveraged in the detection of other infectious diseases in the near future.


Subject(s)
COVID-19 , Nanodiamonds , Antibodies, Viral , COVID-19/diagnosis , Collodion , Humans , Immunoassay/methods , Immunoglobulin G , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
17.
J Immunoassay Immunochem ; 43(6): 579-604, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2028915

ABSTRACT

Lateral flow immunoassay is the leading Point of Care test and is becoming increasingly essential for its versatile properties. The attraction of lateral flow assay (LFA) has reached its prime position during recent SARS-CoV-2 pandemic and Ebola, Zika epidemics in third world countries where primary screening of the disease and financial issues are very important. During the last decade traditional methodology of LFA was limited to visual detection and qualitative assessment only. However, recently researchers are focusing on the development and improvement of this tool to enhance its specificity, assessment power (quantitative) to make it an alternative to traditional lab-based technology. Modifying working principle and instrumentation, combination of different modern molecular techniques such as Reverse transcription loop mediated isothermal amplification (RT-LAMP), Clustered regularly inter-spaced short palindromic repeat (CRISPR-Cas), Recombinase amplification polymerase (RPA), also association of image-based software, involvement of nanotechnology, implementation of LFA ruler have established authenticity and ultra-specific detection level. These leading immunochromatographic techniques offer simultaneous detection of different analytes from a single sample unit into one multiplex strip and provide the necessary information. This review is a foremost attempt to encompass recent advances of lateral flow assays in combination with molecular biology techniques along with improvements of assay components for improved diagnostic sensitivity and specificity. Some infectious disease diagnosis by LFA with its reporter and low detection limit have also been mentioned in this review.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , COVID-19/diagnosis , Humans , Immunoassay/methods , Pandemics , Recombinases , SARS-CoV-2 , Sensitivity and Specificity
18.
Braz J Microbiol ; 53(3): 1263-1269, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2014657

ABSTRACT

Immunological assays to detect SARS-CoV-2 Spike Receptor Binding Domain (RBD) antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost, and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis-tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristic curve of 0.94 was obtained. The method was operated with > 82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty at > 85% sensitivity. The IgG signal obtained with the described method was well-correlated with the signal obtained when pre fusion Spike produced in HEK cell lines was used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Escherichia coli/genetics , Humans , Immunoassay/methods , Immunoglobulin G , Magnetic Phenomena , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
ACS Biomater Sci Eng ; 8(9): 3924-3932, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-1984354

ABSTRACT

Gold nanoparticle-based point-of-care tests (POCT) are one of the most widely used diagnostic tools for SARS-CoV-2 screening. However, the limitation of their insufficient sensitivity often leads to false negative results in early disease diagnostics. The ongoing pandemic of COVID-19 makes diagnostic tools that are more accurate, sensitive, simple, and affordable in high demand. In this work, we develop a platinum-decorated gold nanoparticle (Au@Pt NP)-based microfluidic chip immunoassay with a sensitivity surpassing that of paper-based detection of nucleocapsid (N) protein, one of the most conserved biomarkers of COVID-19. The synthesized Au@Pt NPs show high stability and catalytic activity in complex environments. The catalytic amplification of Au@Pt NPs enables naked-eye detection of N protein in the low femtogram range (ca. 0.1 pg/mL) and the detection of throat swab samples in under 40 min. This microfluidic chip immunoassay is easy for operation and readout without instrument assistance, making it more suitable for on-site detection and future pathogen surveillance.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/diagnosis , Colorimetry/methods , Gold , Humans , Immunoassay/methods , Microfluidics , Platinum , SARS-CoV-2
20.
Angew Chem Int Ed Engl ; 61(37): e202203706, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-1981567

ABSTRACT

Serological assay for coronavirus 2019 (COVID-19) patients including asymptomatic cases can inform on disease progression and prognosis. A detection method taking into account multiplex, high sensitivity, and a wider detection range will help to identify and treat COVID-19. Here we integrated color-size dual-encoded beads and rolling circle amplification (RCA) into a bead-based fluorescence immunoassay implemented in a size sorting chip to achieve high-throughput and sensitive detection. We used the assay for quantifying COVID-19 antibodies against spike S1, nucleocapsid, the receptor binding domain antigens. It also detected inflammatory biomarkers including interleukin-6, interleukin-1ß, procalcitonin, C-reactive protein whose concentrations range from pg mL-1 to µg mL-1 . Use of different size beads integrating with RCA results in a tunable detection range. The assay can be readily modified to simultaneously measure more COVID-19 serological molecules differing by orders of magnitude.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay/methods , Procalcitonin
SELECTION OF CITATIONS
SEARCH DETAIL