Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
Add filters

Document Type
Year range
2.
PLoS One ; 17(1): e0262311, 2022.
Article in English | MEDLINE | ID: covidwho-1622358

ABSTRACT

In the fight against SARS-COV-2, the development of serological assays based on different antigenic domains represent a versatile tool to get a comprehensive picture of the immune response or differentiate infection from vaccination beyond simple diagnosis. Here we use a combination of the Nucleoprotein (NP), the Spike 1 (S1) and Spike 2 (S2) subunits, and the receptor binding domain (RBD) and N-terminal domain (NTD) of the Spike antigens from the CoViDiag® multiplex IgG assay, to follow the immune response to SARS-CoV-2 infection over a long time period and depending on disease severity. Using a panel of 209 sera collected from 61 patients up to eight months after infection, we observed that most patients develop an immune response against multiple viral epitope, but anti-S2 antibodies seemed to last longer. For all the tested IgGs, we have found higher responses for hospitalized patients than for non-hospitalized ones. Moreover the combination of the five different IgG responses increased the correlation to the neutralizing antibody titers than if considered individually. Multiplex immunoassays have the potential to improve diagnostic performances, especially for ancient infection or mild form of the disease presenting weaker antibody responses. Also the combined detection of anti-NP and anti-Spike-derived domains can be useful to differentiate vaccination from viral infection and accurately assess the antibody potential to neutralize the virus.


Subject(s)
COVID-19/immunology , Immunity/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Immunoassay/methods , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
3.
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407

ABSTRACT

The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.


Subject(s)
COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
4.
PLoS One ; 16(3): e0247797, 2021.
Article in English | MEDLINE | ID: covidwho-1605332

ABSTRACT

Since the initial identification of the novel coronavirus SARS-CoV-2 in December of 2019, researchers have raced to understand its pathogenesis and begun devising vaccine and treatment strategies. An accurate understanding of the body's temporal immune response against SARS-CoV-2 is paramount to successful vaccine development and disease progression monitoring. To provide insight into the antibody response against SARS-CoV-2, plasma samples from 181 PCR-confirmed COVID-19 patients collected at various timepoints post-symptom onset (PSO) were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies via lateral flow. Additionally, 21 donors were tracked over time to elucidate patient-specific immune responses. We found sustained levels of anti-SARS-CoV-2 antibodies past 130 days PSO, with 99% positivity observed at 31-60 days PSO. By 61-90 days PSO, the percentage of IgM-/IgG+ results were nearly equal to that of IgM+/IgG+ results, demonstrating a shift in the immune response with a decrease in IgM antibody levels. Results from this study not only provide evidence that the antibody response to COVID-19 can persist for over 4 months, but also demonstrates the ability of Easy Check™ to monitor seroconversion and antibody response of patients. Easy Check was sufficiently sensitive to detect antibodies in patient samples as early as 1-4 days PSO with 86% positivity observed at 5-7 days PSO. Further studies are required to determine the longevity and efficacy of anti-SARS-CoV-2 antibodies, and whether they are protective against re-infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Serological Testing/instrumentation , COVID-19 Serological Testing/methods , Equipment Design , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
5.
Front Immunol ; 12: 797919, 2021.
Article in English | MEDLINE | ID: covidwho-1608316

ABSTRACT

Persistence of protective immunity for SARS-CoV-2 is important against reinfection. Knowledge on SARS-CoV-2 immunity in pediatric patients is currently lacking. We opted to assess the SARS-CoV-2 adaptive immunity in recovered children and adolescents, addressing the pediatrics specific immunity towards COVID-19. Two independent assays were performed to investigate humoral and cellular immunological memory in pediatric convalescent COVID-19 patients. Specifically, RBD IgG, CD4+, and CD8+ T cell responses were identified and quantified in recovered children and adolescents. SARS-CoV-2-specific RBD IgG detected in recovered patients had a half-life of 121.6 days and estimated duration of 7.9 months compared with baseline levels in controls. The specific T cell response was shown to be independent of days after diagnosis. Both CD4+ and CD8+ T cells showed robust responses not only to spike (S) peptides (a main target of vaccine platforms) but were also similarly activated when stimulated by membrane (M) and nuclear (N) peptides. Importantly, we found the differences in the adaptive responses were correlated with the age of the recovered patients. The CD4+ T cell response to SARS-CoV-2 S peptide in children aged <12 years correlated with higher SARS-CoV-2 RBD IgG levels, suggesting the importance of a T cell-dependent humoral response in younger children under 12 years. Both cellular and humoral immunity against SARS-CoV-2 infections can be induced in pediatric patients. Our important findings provide fundamental knowledge on the immune memory responses to SARS-CoV-2 in recovered pediatric patients.


Subject(s)
Adaptive Immunity/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , Adolescent , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Male , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
6.
Front Immunol ; 12: 793191, 2021.
Article in English | MEDLINE | ID: covidwho-1608200

ABSTRACT

Purpose: To compare SARS-CoV-2 antigen-specific antibody production and plasma neutralizing capacity against B.1 wild-type-like strain, and Gamma/P.1 and Delta/B.1.617.2 variants-of-concern, in subjects with different Covid-19 disease and vaccination histories. Methods: Adult subjects were: 1) Unvaccinated/hospitalized for Covid-19; 2) Covid-19-recovered followed by one BNT162b2 vaccine dose; and 3) Covid-19-naïve/2-dose BNT162b2 vaccinated. Multiplex Luminex® immunoassays measured IgG, IgA, and IgM plasma levels against SARS-CoV-2 receptor-binding domain (RBD), spike-1 (S), and nucleocapsid proteins. Neutralizing activity was determined in Vero E6 cytopathic assays. Results: Maximum anti-RBD IgG levels were similar in Covid-19­recovered individuals 8‒10 days after single-dose vaccination and in Covid-19-naïve subjects 7 days after 2nd vaccine dosing; both groups had ≈2­fold higher anti-RBD IgG levels than Unvaccinated/Covid-19 subjects tracked through 2 weeks post-symptom onset. Anti-S IgG expression patterns were similar to RBD within each group, but with lower signal strengths. Viral antigen-specific IgA and IgM levels were more variable than IgG patterns. Anti-nucleocapsid immunoglobulins were not detected in Covid-19-naïve subjects. Neutralizing activity against the B.1 strain, and Gamma/P.1 and Delta/B.1.617.2 variants, was highest in Covid­19-recovered/single-dose vaccinated subjects; although neutralization against the Delta variant in this group was only 26% compared to B.1 neutralization, absolute anti-Delta titers suggested maintained protection. Neutralizing titers against the Gamma and Delta variants were 33‒77% and 26‒67%, respectively, versus neutralization against the B.1 strain (100%) in the three groups. Conclusion: These findings support SARS-CoV-2 mRNA vaccine usefulness regardless of Covid-19 history, and confirm remarkable protection provided by a single vaccine dose in people who have recovered from Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Isotypes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Animals , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin Isotypes/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vero Cells
7.
PLoS One ; 17(1): e0262162, 2022.
Article in English | MEDLINE | ID: covidwho-1605852

ABSTRACT

Analysis of convalescent plasma derived from individuals has shown that IgG3 has the most important role in binding to SARS-CoV-2 antigens; however, this has not yet been confirmed in large studies, and the link between binding and neutralization has not been confirmed. By analyzing plasma pools consisting of 247-567 individual convalescent donors, we demonstrated the binding of IgG3 and IgM to Spike-1 protein and the receptor-binding domain correlates strongly with viral neutralization in vitro. Furthermore, despite accounting for only approximately 12% of total immunoglobulin mass, collectively IgG3 and IgM account for approximately 80% of the total neutralization. This may have important implications for the development of potent therapies for COVID-19, as it indicates that hyperimmune globulins or convalescent plasma donations with high IgG3 concentrations may be a highly efficacious therapy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Convalescence , Immunoglobulin G/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , SARS-CoV-2/physiology , Vero Cells
8.
Front Immunol ; 12: 759688, 2021.
Article in English | MEDLINE | ID: covidwho-1605844

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Saliva/virology , Vaccination
9.
Front Immunol ; 12: 777858, 2021.
Article in English | MEDLINE | ID: covidwho-1581332

ABSTRACT

Background: Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method. Methods: Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis. Results: In our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study. Conclusions: Based on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mouth Mucosa/immunology , SARS-CoV-2 , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
10.
Front Immunol ; 12: 798859, 2021.
Article in English | MEDLINE | ID: covidwho-1581315

ABSTRACT

SARS-CoV-2 antibodies in saliva serve as first line of defense against the virus. They are present in the mucosa, more precisely in saliva, after a recovered infection and also following vaccination. We report here the antibody persistence in plasma and in saliva up to 15 months after mild COVID-19. The IgG antibody response was measured every two months in 72 participants using an established and validated in-house ELISA assay. In addition, the virus inhibitory activity of plasma antibodies was assessed in a surrogate virus neutralization test before and after vaccination. SARS-CoV-2-specific antibody concentrations remained stable in plasma and saliva and the response was strongly boosted after one dose COVID-19 vaccination.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2
11.
Viruses ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580419

ABSTRACT

A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.


Subject(s)
Antibodies, Viral/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/immunology , COVID-19 Serological Testing , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Protein Array Analysis , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Viruses/classification
13.
Int Immunopharmacol ; 103: 108491, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587489

ABSTRACT

To better understand the immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with COVID-19, it is important to investigate the kinetics of the antibody responses and their associations with the clinical course in different populations, since there seem to be considerable differences between Western and Asian populations in the clinical features and spread of COVID-19. In this study, we serially measured the serum titers of IgM, IgG and IgA antibodies generated against the nucleocapsid protein (NCP), S1 subunit of the spike protein (S1), and receptor-binding domain in the S1 subunit (RBD) of SARS-CoV-2 in Japanese individuals with COVID-19. Among the IgM, IgG, and IgA antibodies, IgA antibodies against all of the aforementioned viral proteins were the first to appear after the infection, and IgG and/or IgA seroconversion often preceded IgM seroconversion. In regard to the timeline of the antibody responses to the different viral proteins (NCP, S1 and RBD), IgA against NCP appeared than IgA against S1 or RBD, while IgM and IgG against S1 appeared earlier than IgM/IgG against NCP or RBD. The IgG responses to all three viral proteins and responses of all three antibody classes to S1 and RBD were sustained for longer durations than the IgA/IgM responses to all three viral proteins and responses of all three antibody classes to NCP, respectively. The seroconversion of IgA against NCP occurred later and less frequently in patients with mild COVID-19. These results suggest possible differences in the antibody responses to SARS-CoV-2 antigens between the Japanese and Western populations.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2 , Antibody Formation , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Japan/epidemiology , Japan/ethnology , Seroconversion , Viral Proteins/immunology
14.
Sci Rep ; 11(1): 24198, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585789

ABSTRACT

Certain immunizations including vaccination against tick-borne encephalitis virus (TBEV) have been suggested to confer cross-protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Within a prospective healthcare worker (HCW) cohort, we assessed the potentially protective role of anti-TBEV antibodies against SARS-CoV-2 infection. Among 3352 HCW, those with ≥ 1 previous TBEV vaccination (n = 2018, 60%) showed a reduced risk of SARS-CoV-2 seroconversion (adjusted odds ratio: 0.8, 95% CI: 0.7-1.0, P = 0.02). However, laboratory testing of a subgroup of 26 baseline and follow-up samples did not demonstrate any neutralizing effect of anti-TBEV antibodies against SARS-CoV-2 in live-virus neutralization assay. However, we observed significantly higher anti-TBEV antibody titers in follow-up samples of participants with previous TBEV vaccination compared to baseline, both TBEV neutralizing (p = 0.001) and total IgG (P < 0.0001), irrespective of SARS-CoV-2 serostatus. Based on these data, we conclude that the observed association of previous TBEV vaccination and reduced risk of SARS-CoV-2 infection is likely due to residual confounding factors. The increase in TBEV follow-up antibody titers can be explained by natural TBEV exposure or potential non-specific immune activation upon exposure to various pathogens, including SARS-CoV-2. We believe that these findings, although negative, contribute to the current knowledge on potential cross-immunity against SARS-CoV-2 from previous immunizations.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross Protection/immunology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/physiology , Seroconversion , Vaccination
15.
Commun Biol ; 4(1): 1389, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1585764

ABSTRACT

In light of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants potentially undermining humoral immunity, it is important to understand the fine specificity of the antiviral antibodies. We screened 20 COVID-19 patients for antibodies against 9 different SARS-CoV-2 proteins observing responses against the spike (S) proteins, the receptor-binding domain (RBD), and the nucleocapsid (N) protein which were of the IgG1 and IgG3 subtypes. Importantly, mutations which typically occur in the B.1.351 "South African" variant, significantly reduced the binding of anti-RBD antibodies. Nine of 20 patients were critically ill and were considered high-risk (HR). These patients showed significantly higher levels of transforming growth factor beta (TGF-ß) and myeloid-derived suppressor cells (MDSC), and lower levels of CD4+ T cells expressing LAG-3 compared to standard-risk (SR) patients. HR patients evidenced significantly higher anti-S1/RBD IgG antibody levels and an increased neutralizing activity. Importantly, a large proportion of S protein-specific antibodies were glycosylation-dependent and we identified a number of immunodominant linear epitopes within the S1 and N proteins. Findings derived from this study will not only help us to identify the most relevant component of the anti-SARS-CoV-2 humoral immune response but will also enable us to design more meaningful immunomonitoring methods for anti-COVID-19 vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Adaptive Immunity/immunology , Adult , Aged , COVID-19/virology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Male , Middle Aged , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
16.
MAbs ; 14(1): 2002236, 2022.
Article in English | MEDLINE | ID: covidwho-1585298

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Surface Display Techniques , Immunoglobulin G/immunology , Peptide Library , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Binding Sites, Antibody , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , Host-Pathogen Interactions , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Mesocricetus , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Vero Cells
17.
MAbs ; 14(1): 2005507, 2022.
Article in English | MEDLINE | ID: covidwho-1585297

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibody Affinity/immunology , Antibody Specificity/immunology , CHO Cells , COVID-19/prevention & control , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Clone Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Isoelectric Point , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
18.
J Immunol ; 208(2): 429-443, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1572737

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Subject(s)
Antibody Formation , COVID-19/immunology , Immunity, Cellular , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors
19.
Nutrients ; 13(12)2021 Dec 02.
Article in English | MEDLINE | ID: covidwho-1551616

ABSTRACT

A single-center, randomized, double-blind, placebo-controlled study was conducted in 72 volunteers who received a synergistic combination of yeast-based ingredients with a unique ß-1,3/1,6-glucan complex and a consortium of heat-treated probiotic Saccharomyces cerevisiae rich in selenium and zinc (ABB C1®) or placebo on the next day after getting vaccinated against influenza (Chiromas®) (n = 34) or the COVID-19 (Comirnaty®) (n = 38). The duration of treatment was 30 and 35 days for the influenza and COVID-19 vaccine groups, respectively. Mean levels of CD4+T cells increased from 910.7 at baseline to 1000.2 cells/µL after the second dose of the COVID-19 vaccine in the ABB C1® group, whereas there was a decrease from 1055.1 to 929.8 cells/µL in the placebo group. Changes of CD3+T and CD8+T lymphocytes showed a similar trend. In the COVID-19 cohort, the increases in both IgG and IgM were higher in the ABB C1® supplement than in the placebo group. Serum levels of selenium and zinc showed a higher increase in subjects treated with the active product than in those receiving placebo. No serious adverse events related to ABB C1® or tolerance issues were reported. The study findings validate the capacity of the ABB C1® product to stimulate trained immunity.


Subject(s)
COVID-19 Vaccines/administration & dosage , Dietary Supplements , Influenza Vaccines/administration & dosage , Saccharomyces cerevisiae , Selenium/administration & dosage , Zinc/administration & dosage , beta-Glucans/administration & dosage , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Influenza Vaccines/immunology , Male , Middle Aged , Selenium/immunology , Zinc/immunology , beta-Glucans/immunology
20.
J Med Virol ; 93(12): 6582-6587, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544305

ABSTRACT

The purpose of this study was to evaluate the SARS-CoV-2 immunoglobulin M/immunoglobulin G (IgM/IgG) rapid antibody test results in symptomatic patients with COVID-19 and their chest computed tomography (CT) data. A total of 320 patients admitted to our hospital for different durations due to COVID-19 were included in the study. Serum samples were obtained within 0-7 days from COVID-19 patients confirmed by reverse-transcription polymerase chain reaction (RT-PCR) and chest CT scan. According to the SARS-CoV-2 RT-PCR results, the patients included in the study were divided into two groups: PCR positive group (n = 46) and PCR negative group (n = 274). The relationship between chest CT and rapid antibody test results were compared statistically. Of the 320 COVID-19 serum samples, IgM, IgG, and IgM/IgG were detected in 8.4%, 0.3%, and 11.6% within 1 week, respectively. IgG/IgM antibodies were not detected in 79.7% of the patients. In the study, 249 (77.8%) of 320 patients had positive chest CT scans. Four (5.6%) of 71 patients with negative chest CT scans had IgM and two (2.8%) were both IgM/IgG positive. IgM was detected in 23 (9.2%), IgG in one (0.4%), and IgM/IgG in 35 (14%) of chest CT scan positive patients. The rate of CT findings in patients with antibody positivity was found to be significantly higher than those with antibody negativity. The results of the present study show the accurate and equivalent performance of serological antibody assays and chest CT in detecting SARS-CoV-2 within 0-7 days from the onset of COVID19 symptoms. When RT-PCR is not available, we believe that the combination of immunochromatographic test and chest CT scan can increase diagnostic sensitivity for COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/diagnostic imaging , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Radiography, Thoracic , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...