Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
2.
Front Immunol ; 12: 793191, 2021.
Article in English | MEDLINE | ID: covidwho-1608200

ABSTRACT

Purpose: To compare SARS-CoV-2 antigen-specific antibody production and plasma neutralizing capacity against B.1 wild-type-like strain, and Gamma/P.1 and Delta/B.1.617.2 variants-of-concern, in subjects with different Covid-19 disease and vaccination histories. Methods: Adult subjects were: 1) Unvaccinated/hospitalized for Covid-19; 2) Covid-19-recovered followed by one BNT162b2 vaccine dose; and 3) Covid-19-naïve/2-dose BNT162b2 vaccinated. Multiplex Luminex® immunoassays measured IgG, IgA, and IgM plasma levels against SARS-CoV-2 receptor-binding domain (RBD), spike-1 (S), and nucleocapsid proteins. Neutralizing activity was determined in Vero E6 cytopathic assays. Results: Maximum anti-RBD IgG levels were similar in Covid-19­recovered individuals 8‒10 days after single-dose vaccination and in Covid-19-naïve subjects 7 days after 2nd vaccine dosing; both groups had ≈2­fold higher anti-RBD IgG levels than Unvaccinated/Covid-19 subjects tracked through 2 weeks post-symptom onset. Anti-S IgG expression patterns were similar to RBD within each group, but with lower signal strengths. Viral antigen-specific IgA and IgM levels were more variable than IgG patterns. Anti-nucleocapsid immunoglobulins were not detected in Covid-19-naïve subjects. Neutralizing activity against the B.1 strain, and Gamma/P.1 and Delta/B.1.617.2 variants, was highest in Covid­19-recovered/single-dose vaccinated subjects; although neutralization against the Delta variant in this group was only 26% compared to B.1 neutralization, absolute anti-Delta titers suggested maintained protection. Neutralizing titers against the Gamma and Delta variants were 33‒77% and 26‒67%, respectively, versus neutralization against the B.1 strain (100%) in the three groups. Conclusion: These findings support SARS-CoV-2 mRNA vaccine usefulness regardless of Covid-19 history, and confirm remarkable protection provided by a single vaccine dose in people who have recovered from Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Isotypes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Animals , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin Isotypes/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vero Cells
3.
Mol Biol Rep ; 49(3): 2465-2474, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1605165

ABSTRACT

Coronavirus outbreak was declared a pandemic by World Health Organization (WHO) in March 2020. The pandemic has led to a devastating loss of life. It has shown us how infectious diseases can cause human existence at stake, and community health is important. The spike protein is the most immunogenic component of the virus. Most vaccine development strategies have focused on the receptor-binding domain (RBD) in the spike protein because it is the most specific target site that recognizes and interacts with human lung cells. Neutralizing antibodies are generated by the humoral immune system and reduce the viral load by binding to spike protein components. Neutralizing antibodies are the proteins secreted by plasma cells and serve as an important part of the defense mechanism. In the recent Covid-19 infection, neutralizing antibodies can be utilized for both diagnostic such as immune surveillance and therapeutic tools such as plasma therapy. So far, many monoclonal antibodies are in the clinical trial phase, and few of them are already in use. In this review, we have discussed details about neutralizing antibodies and their role in combating Covid-19 disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/isolation & purification , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Clinical Trials as Topic , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Forecasting , Germinal Center/immunology , Humans , Immunization, Passive , Immunoglobulin Isotypes/immunology , Immunologic Memory , Immunologic Surveillance , Macaca mulatta , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Front Immunol ; 12: 748291, 2021.
Article in English | MEDLINE | ID: covidwho-1555236

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Subject(s)
COVID-19/immunology , Convalescence , Immunity, Humoral , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Serological Testing/standards , Calibration , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Reference Standards , Severity of Illness Index
5.
Mucosal Immunol ; 14(5): 1144-1159, 2021 09.
Article in English | MEDLINE | ID: covidwho-1550272

ABSTRACT

Increased IgE is a typical feature of allergic rhinitis. Local class-switch recombination has been intimated but B cell precursors and mechanisms remain elusive. Here we describe the dynamics underlying the generation of IgE-antibody secreting cells (ASC) in human nasal polyps (NP), mucosal tissues rich in ASC without germinal centers (GC). Using VH next generation sequencing, we identified an extrafollicular (EF) mucosal IgD+ naïve-like intermediate B cell population with high connectivity to the mucosal IgE ASC. Mucosal IgD+ B cells, express germline epsilon transcripts and predominantly co-express IgM. However, a small but significant fraction co-express IgG or IgA instead which also show connectivity to ASC IgE. Phenotypically, NP IgD+ B cells display an activated profile and molecular evidence of BCR engagement. Transcriptionally, mucosal IgD+ B cells reveal an intermediate profile between naïve B cells and ASC. Single cell IgE ASC analysis demonstrates lower mutational frequencies relative to IgG, IgA, and IgD ASC consistent with IgE ASC derivation from mucosal IgD+ B cell with low mutational load. In conclusion, we describe a novel mechanism of GC-independent, extrafollicular IgE ASC formation at the nasal mucosa whereby activated IgD+ naïve B cells locally undergo direct and indirect (through IgG and IgA), IgE class switch.


Subject(s)
Antibody Formation/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Immunoglobulin D/immunology , Immunoglobulin E/immunology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Adult , Antibody Formation/genetics , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Computational Biology , Gene Expression Profiling , Germinal Center/immunology , High-Throughput Nucleotide Sequencing , Humans , Hypersensitivity/etiology , Hypersensitivity/metabolism , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunophenotyping , Nasal Polyps/etiology , Nasal Polyps/metabolism , Nasal Polyps/pathology , Pollen/immunology , Seasons , Somatic Hypermutation, Immunoglobulin
6.
Cell Rep ; 37(6): 109959, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1474393

ABSTRACT

Antibody transfer via breastmilk represents an evolutionary strategy to boost immunity in early life. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies have been observed in the breastmilk, the functional quality of these antibodies remains unclear. Here, we apply systems serology to characterize SARS-CoV-2-specific antibodies in maternal serum and breastmilk to compare the functional characteristics of antibodies in these fluids. Distinct SARS-CoV-2-specific antibody responses are observed in the serum and breastmilk of lactating individuals previously infected with SARS-CoV-2, with a more dominant transfer of immunoglobulin A (IgA) and IgM into breastmilk. Although IgGs are present in breastmilk, they are functionally attenuated. We observe preferential transfer of antibodies capable of eliciting neutrophil phagocytosis and neutralization compared to other functions, pointing to selective transfer of certain functional antibodies to breastmilk. These data highlight the preferential transfer of SARS-CoV-2-specific IgA and IgM to breastmilk, accompanied by select IgG subpopulations, positioned to create a non-pathologic but protective barrier against coronavirus disease 2019 (COVID-19).


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , Antibody Formation/immunology , Female , Humans , Immunoglobulin Isotypes/immunology , Lactation/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
Front Immunol ; 12: 724047, 2021.
Article in English | MEDLINE | ID: covidwho-1405412

ABSTRACT

Objectives: Impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on individuals with arthritis has been highlighted whereas data on other rheumatic diseases, e.g., systemic lupus erythematosus (SLE), are scarce. Similarly to SLE, severe SARS-CoV-2 infection includes risks for thromboembolism, an unbalanced type I interferon response, and complement activation. Herein, SARS-CoV-2 antibodies in longitudinal samples collected prior to vaccination were analyzed and compared with SLE progression and antinuclear antibody (ANA) levels. Methods: One hundred patients (83 women) with established SLE and a regular visit to the rheumatologist (March 2020 to January 2021) were included. All subjects donated blood and had done likewise prior to the pandemic. SARS-CoV-2 antibody isotypes (IgG, IgA, IgM) to the cell receptor-binding S1-spike outer envelope protein were detected by ELISA, and their neutralizing capacity was investigated. IgG-ANA were measured by multiplex technology. Results: During the pandemic, 4% had PCR-confirmed infection but 36% showed SARS-CoV-2 antibodies of ≥1 isotype; IgA was the most common (30%), followed by IgM (9%) and IgG (8%). The antibodies had low neutralizing capacity and were detected also in prepandemic samples. Plasma albumin (p = 0.04) and anti-dsDNA (p = 0.003) levels were lower in patients with SARS-CoV-2 antibodies. Blood group, BMI, smoking habits, complement proteins, daily glucocorticoid dose, use of hydroxychloroquine, or self-reported coronavirus disease 2019 (COVID-19) symptoms (except fever, >38.5°C) did not associate with SARS-CoV-2 antibodies. Conclusion: Our data from early 2021 indicate that a large proportion of Swedish SLE patients had serological signs of exposure to SARS-CoV-2 but apparently with a minor impact on the SLE course. Use of steroids and hydroxychloroquine showed no distinct effects, and self-reported COVID-19-related symptoms correlated poorly with all antibody isotypes.


Subject(s)
Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Female , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Male , Middle Aged , SARS-CoV-2
8.
Sci Immunol ; 6(62)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1352519

ABSTRACT

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunophenotyping , SARS-CoV-2/immunology , Transcriptome , Adult , Aged , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , COVID-19/virology , Cell Plasticity/genetics , Cell Plasticity/immunology , Clonal Evolution/immunology , Female , Gene Expression Profiling , Humans , Immunoglobulin Isotypes/immunology , Immunologic Memory , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Front Immunol ; 12: 708184, 2021.
Article in English | MEDLINE | ID: covidwho-1346403

ABSTRACT

There is a worldwide pandemic of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; yet our understanding remains limited on the characteristic of antibodies, especially for dynamic long-term tracking. Sequential serum samples were collected up to 416 days post onset of symptoms (POS) from 102 patients who were hospitalized with coronavirus disease 2019 (COVID-19). Immunoglobulin (Ig)G, IgM, and IgA levels targeting SARS-CoV-2 spike 1 receptor-binding domain (S1-RBD), spike 2 extracellular domain (S2-ECD), and nucleocapsid protein (N) were quantified as well as neutralizing activity. We were pleasantly surprised to find that the antibody remained detective and effective for more than a year POS. We also found the varied reactions of different antibodies as time passed: N-IgA rose most rapidly in the early stage of infection, while S2-IgG was present at a high level in the long time of observation. This study described the long traceable antibody response of the COVID-19 and offered hints about targets to screen for postinfectious immunity and for vaccination development of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Female , Follow-Up Studies , Hospitalization , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Kinetics , Male , Middle Aged , Models, Theoretical , Phosphoproteins/immunology , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
10.
J Immunol ; 206(10): 2393-2401, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1215527

ABSTRACT

Serological tests for detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Abs in blood are expected to identify individuals who have acquired immunity against SARS-CoV-2 and indication of seroprevalence of SARS-CoV-2 infection. Many serological tests have been developed to detect Abs against SARS-CoV-2. However, these tests have considerable variations in their specificity and sensitivity, and whether they can predict levels of neutralizing activity is yet to be determined. This study aimed to investigate the kinetics and neutralizing activity of various Ag-specific Ab isotypes against SARS-CoV-2 in serum of coronavirus disease 2019 (COVID-19) patients confirmed via PCR test. We developed IgG, IgM, and IgA measurement assays for each Ag, including receptor-binding domain (RBD) of spike (S) protein, S1 domain, full-length S protein, S trimer, and nucleocapsid (N) domain, based on ELISA. The assays of the S protein for all isotypes showed high specificity, whereas the assays for all isotypes against N protein showed lower specificity. The sensitivity of all Ag-specific Ab isotypes depended on the timing of the serum collection and all of them, except for IgM against N protein, reached more than 90% at 15-21 d postsymptom onset. The best correlation with virus-neutralizing activity was found for IgG against RBD, and levels of IgG against RBD in sera from four patients with severe COVID-19 increased concordantly with neutralizing activity. Our results provide valuable information regarding the selection of serological test for seroprevalence and vaccine evaluation studies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Specificity , Antigens, Viral/immunology , COVID-19/immunology , Immunoglobulin Isotypes/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged
11.
Viruses ; 13(4)2021 04 16.
Article in English | MEDLINE | ID: covidwho-1194709

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is a global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While detection of SARS-CoV-2 by polymerase chain reaction with reverse transcription (RT-PCR) is currently used to diagnose acute COVID-19 infection, serological assays are needed to study the humoral immune response to SARS-CoV-2. Anti-SARS-CoV-2 immunoglobulin (Ig)G/A/M antibodies against spike (S) protein and its receptor-binding domain (RBD) were characterized in recovered subjects who were RT-PCR-positive (n = 153) and RT-PCR-negative (n = 55) using an enzyme-linked immunosorbent assay (ELISA). These antibodies were also further assessed for their ability to neutralize live SARS-CoV-2 virus. Anti-SARS-CoV-2 antibodies were detected in 90.9% of resolved subjects up to 180 days post-symptom onset. Anti-S protein and anti-RBD IgG titers correlated (r = 0.5157 and r = 0.6010, respectively) with viral neutralization. Of the RT-PCR-positive subjects, 22 (14.3%) did not have anti-SARS-CoV-2 antibodies; and of those, 17 had RT-PCR cycle threshold (Ct) values > 27. These high Ct values raise the possibility that these indeterminate results are from individuals who were not infected or had mild infection that failed to elicit an antibody response. This study highlights the importance of serological surveys to determine population-level immunity based on infection numbers as determined by RT-PCR.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Young Adult
12.
J Perinatol ; 41(5): 952-960, 2021 05.
Article in English | MEDLINE | ID: covidwho-1111968

ABSTRACT

OBJECTIVE: The influence of previous viral symptoms on the level and duration of human milk antibodies reactive to SARS-CoV-2, and common human coronaviruses (HCoVs) was investigated. STUDY DESIGN: Antibodies reactive to S1 and S2 subunits from SARS-CoV-2, HCoV-OC43, and HCoV-229E were measured via ELISA in human milk samples collected from March to June 2020 in mothers with and without viral symptoms. RESULTS: The presence of viral symptoms influenced the levels of SARS-CoV-2 S2-reactive SIgA/IgA and tended to influence SARS-CoV-2 S1 SIgA/IgA and S2-reactive SIgM/IgM in human milk but did not relate to IgG. HCoV-229E S1 + S2-reactive SIgA/IgA and SIgM/IgM, as well as HCoV-OC43 S1 + S2-reactive IgG were related to the symptoms. The duration of antibody levels in human milk in mothers with viral symptoms varied between 3 and 4 months post maternal report of viral symptoms. CONCLUSION: Previous viral symptoms and individual mothers may change the antibody cross-reactive levels to SARS-CoV-2 and HCoVs in human milk.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Milk, Human/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Young Adult
13.
Eur J Clin Microbiol Infect Dis ; 40(5): 955-961, 2021 May.
Article in English | MEDLINE | ID: covidwho-942555

ABSTRACT

Antibody detection is essential to establish exposure, infection, and immunity to SARS-CoV-2, as well as to perform epidemiological studies. The worldwide urge for new diagnostic tools to control the pandemic has led to a quick incorporation in clinical practice of the recently developed serological assays. However, as only few comparative studies have been published, there is a lack of data about the diagnostic accuracy of currently available assays. We evaluated the diagnostic accuracy to detect Ig G, Ig M+A, and/or IgA anti SARS-CoV-2 of 10 different assays: lateral flow card immunoassays, 4 enzyme-linked immunosorbent assay (ELISA), and 3 chemiluminescent particle immunoassays (CMIA). Using reverse transcriptase polymerase chain reaction (RT-PCR) for COVID-19 as gold standard, sensitivity, specificity, PPV, and NPV were determined. Each assay was tested in 2 groups, namely, positive control, formed by 50 sera from 50 patients with SARS-CoV-2 pneumonia with positive RT-PCR; and negative control, formed by 50 sera from 50 patients with respiratory infection non-COVID-19. Sensitivity range of the 10 assays evaluated for patients with positive COVID-19 RT-PCR was 40-77% (65-81% considering IgG plus IgM). Specificity ranged 83-100%. VPP and VPN were respectively 81-100% and 61.6-81%. Among the lateral flow immunoassays, the highest sensitivity and specificity results were found in Wondfo® SARS-CoV-2 Antibody Test. ELISA IgG and IgA from EUROIMMUN® were the most sensitive ELISA. However, poor results were obtained for isolated detection of IgG. We found similar sensitivity for IgG with SARS-CoV-2 for Architect by Abbott® and ELISA by Vircell®. Results obtained varied widely among the assays evaluated. Due to a better specificity, overall diagnostic accuracy of the assays evaluated was higher in case of positive result. On the other side, lack of antibody detection should be taken with care because of the low sensitivity described. Highest diagnostic accuracy was obtained with ELISA and CMIAs, but they last much longer.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/blood , COVID-19 Nucleic Acid Testing/standards , Female , Humans , Immunoassay/methods , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Sensitivity and Specificity
14.
Nat Commun ; 11(1): 4704, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-779998

ABSTRACT

Many public health responses and modeled scenarios for COVID-19 outbreaks caused by SARS-CoV-2 assume that infection results in an immune response that protects individuals from future infections or illness for some amount of time. The presence or absence of protective immunity due to infection or vaccination (when available) will affect future transmission and illness severity. Here, we review the scientific literature on antibody immunity to coronaviruses, including SARS-CoV-2 as well as the related SARS-CoV, MERS-CoV and endemic human coronaviruses (HCoVs). We reviewed 2,452 abstracts and identified 491 manuscripts relevant to 5 areas of focus: 1) antibody kinetics, 2) correlates of protection, 3) immunopathogenesis, 4) antigenic diversity and cross-reactivity, and 5) population seroprevalence. While further studies of SARS-CoV-2 are necessary to determine immune responses, evidence from other coronaviruses can provide clues and guide future research.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Coronavirus Infections/therapy , Cross Reactions , Databases, Factual , Humans , Immunization, Passive , Immunoglobulin Isotypes/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2 , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL