Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.089
Filter
1.
Int J Public Health ; 67: 1604548, 2022.
Article in English | MEDLINE | ID: covidwho-2324885

ABSTRACT

Objective: We aimed to quantify SARS-CoV-2 specific antibodies' seroprevalence among university students in Porto. Methods: A rapid point of care testing for SARS-CoV-2 specific immunoglobulin (Ig) M and IgG antibodies was performed, and a questionnaire was applied to 6512 voluntary students from September to December 2020. We computed the apparent IgM, IgG, and IgM or IgG prevalence, and the true prevalence and 95% credible intervals (95% CI) using Bayesian inference. Results: We found an apparent prevalence (IgM or IgG) of 9.7%, the true prevalence being 7.9% (95% CI 4.9-11.1). Prevalence was significantly higher among males (10.9% vs. 9.2%), international students (18.1% vs. 10.4% local vs. 8.8% nationally displaced), and increased with age. Those with a known risk contact, that experienced quarantine, had symptoms, or a previous negative molecular test had a higher seroprevalence. Of the 91 (1.4%) students who reported a molecular diagnosis, 86.8% were reactive for IgM or IgG. Conclusion: Based on immunological evidence infection was 5.6-fold the reported molecular diagnosis. The higher seroprevalence among male, older, and international students emphasizes the importance of identifying particular groups.


Subject(s)
COVID-19 , Male , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , SARS-CoV-2 , Cross-Sectional Studies , Immunoglobulin M , Bayes Theorem , Antibodies, Viral , Immunoglobulin G , Students
2.
Front Immunol ; 14: 1183983, 2023.
Article in English | MEDLINE | ID: covidwho-2326180

ABSTRACT

Introduction: The duration and timing of immunity conferred by COVID-19 vaccination in sub-Saharan Africa are crucial for guiding pandemic policy interventions, but systematic data for this region is scarce. This study investigated the antibody response after AstraZeneca vaccination in COVID-19 convalescent Ugandans. Methods: We recruited 86 participants with a previous rt-PCR-confirmed mild or asymptomatic COVID-19 infection and measured the prevalence and levels of spike-directed IgG, IgM, and IgA antibodies at baseline, 14 and 28 days after the first dose (priming), 14 days after the second dose (boosting), and at six- and nine-months post-priming. We also measured the prevalence and levels of nucleoprotein-directed antibodies to assess breakthrough infections. Results: Within two weeks of priming, vaccination substantially increased the prevalence and concentrations of spike-directed antibodies (p < 0.0001, Wilcoxon signed rank test), with 97.0% and 66% of vaccinated individuals possessing S-IgG and S-IgA antibodies before administering the booster dose. S-IgM prevalence changed marginally after the initial vaccination and barely after the booster, consistent with an already primed immune system. However, we also observed a rise in nucleoprotein seroprevalence, indicative of breakthroughs six months after the initial vaccination. Discussion: Our results suggest that vaccination of COVID-19 convalescent individuals with the AstraZeneca vaccine induces a robust and differential spike-directed antibody response. The data highlights the value of vaccination as an effective method for inducing immunity in previously infected individuals and the importance of administering two doses to maintain protective immunity. Monitoring anti-spike IgG and IgA when assessing vaccine-induced antibody responses is suggested for this population; assessing S-IgM will underestimate the response. The AstraZeneca vaccine is a valuable tool in the fight against COVID-19. Further research is needed to determine the durability of vaccine-induced immunity and the potential need for booster doses.


Subject(s)
COVID-19 , Vaccines , Humans , Antibody Formation , COVID-19 Vaccines , Seroepidemiologic Studies , Uganda , COVID-19/epidemiology , Vaccination , Immunoglobulin A , Nucleoproteins , Immunoglobulin G , Immunoglobulin M
3.
JAMA Netw Open ; 6(5): e2314291, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2325464

ABSTRACT

Importance: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures: IgG, IgM and IgA antibody binding to cardiac tissue. Results: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.


Subject(s)
COVID-19 , Myocarditis , Adult , Humans , Male , Child , Adolescent , Middle Aged , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Autoantibodies , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccination , Immunoglobulin G , Immunoglobulin A , Fluoresceins , Immunoglobulin M
4.
Euro Surveill ; 25(23)2020 06.
Article in English | MEDLINE | ID: covidwho-2313322

ABSTRACT

We reviewed the diagnostic accuracy of SARS-CoV-2 serological tests. Random-effects models yielded a summary sensitivity of 82% for IgM, and 85% for IgG and total antibodies. For specificity, the pooled estimate were 98% for IgM and 99% for IgG and total antibodies. In populations with ≤ 5% of seroconverted individuals, unless the assays have perfect (i.e. 100%) specificity, the positive predictive value would be ≤ 88%. Serological tests should be used for prevalence surveys only in hard-hit areas.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronaviridae Infections/diagnosis , Coronavirus Infections/diagnosis , Coronavirus/immunology , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Severe Acute Respiratory Syndrome/immunology , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Coronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Predictive Value of Tests , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods , Severe Acute Respiratory Syndrome/blood
5.
Front Immunol ; 13: 977443, 2022.
Article in English | MEDLINE | ID: covidwho-2316329

ABSTRACT

Thrombosis is a major clinical complication of COVID-19 infection. COVID-19 patients show changes in coagulation factors that indicate an important role for the coagulation system in the pathogenesis of COVID-19. However, the multifactorial nature of thrombosis complicates the prediction of thrombotic events based on a single hemostatic variable. We developed and validated a neural net for the prediction of COVID-19-related thrombosis. The neural net was developed based on the hemostatic and general (laboratory) variables of 149 confirmed COVID-19 patients from two cohorts: at the time of hospital admission (cohort 1 including 133 patients) and at ICU admission (cohort 2 including 16 patients). Twenty-six patients suffered from thrombosis during their hospital stay: 19 patients in cohort 1 and 7 patients in cohort 2. The neural net predicts COVID-19 related thrombosis based on C-reactive protein (relative importance 14%), sex (10%), thrombin generation (TG) time-to-tail (10%), α2-Macroglobulin (9%), TG curve width (9%), thrombin-α2-Macroglobulin complexes (9%), plasmin generation lag time (8%), serum IgM (8%), TG lag time (7%), TG time-to-peak (7%), thrombin-antithrombin complexes (5%), and age (5%). This neural net can predict COVID-19-thrombosis at the time of hospital admission with a positive predictive value of 98%-100%.


Subject(s)
COVID-19 , Hemostatics , Thrombosis , Antithrombins , C-Reactive Protein , COVID-19/complications , Fibrinolysin , Humans , Immunoglobulin M , Neural Networks, Computer , Predictive Value of Tests , Thrombin/metabolism , Thrombosis/etiology
6.
Front Immunol ; 13: 954801, 2022.
Article in English | MEDLINE | ID: covidwho-2315271

ABSTRACT

SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR < 0.05, absolute log2 fold change greater than 0.25, and VIP >1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What's more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.


Subject(s)
COVID-19 , Viral Vaccines , Biomarkers , COVID-19/prevention & control , COVID-19 Vaccines , Cytokines , Glutamic Acid , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Indoles , Metabolomics , SARS-CoV-2 , Succinic Acid , Taurine , Vaccination , gamma-Aminobutyric Acid
7.
Front Immunol ; 13: 953043, 2022.
Article in English | MEDLINE | ID: covidwho-2314969

ABSTRACT

Background: At the beginning of the SARS-CoV-2 pandemic, there was a lack of information about the infection's impact on pregnancy and capability to induce de novo autoantibodies. It soon became clear that thrombosis was a manifestation of COVID-19, therefore the possible contribution of de novo antiphospholipid antibodies (aPL) raised research interest. We aimed at screening SARS-CoV-2 positive pregnant patients for aPL. Methods: The study included consecutive pregnant women who were hospitalized in our Obstetric Department between March 2020 and July 2021 for either a symptomatic SARS-CoV-2 infection or for other reasons (obstetric complications, labour, delivery) and found positive at the admission nasopharyngeal swab. All these women underwent the search for aPL by means of Lupus Anticoagulant (LA), IgG/IgM anti-cardiolipin (aCL), IgG/IgM anti-beta2glycoprotein I (aB2GPI). Data about comorbidities, obstetric and neonatal complications were collected. Results: 151 women were included. Sixteen (11%) were positive for aPL, mostly at low titre. Pneumonia was diagnosed in 20 women (5 with positive aPL) and 5 required ICU admission (2 with positive aPL). Obstetric complications occurred in 10/16 (63%) aPL positive and in 36/135 (27%) negative patients. The occurrence of HELLP syndrome and preeclampsia was significantly associated with positive aPL (p=0,004). One case of maternal thrombosis occurred in an aPL negative woman. aPL positivity was checked after at least 12 weeks in 7/16 women (44%): 3 had become negative; 2 were still positive (1 IgG aB2GPI + IgG aCL; 1 IgM aB2GPI); 1 remained positive for IgG aCL but became negative for aB2GPI; 1 became negative for LA but displayed a new positivity for IgG aCL at high titre. Conclusions: The frequency of positive aPL in pregnant women with SARS-CoV-2 infection was low in our cohort and similar to the one described in the general obstetric population. aPL mostly presented as single positive, low titre, transient antibodies. The rate of obstetric complications was higher in aPL positive women as compared to negative ones, particularly hypertensive disorders. Causality cannot be excluded; however, other risk factors, including a full-blown picture of COVID-19, may have elicited the pathogenic potential of aPL and contributed themselves to the development of complications.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Thrombosis , Antibodies, Antiphospholipid , Antiphospholipid Syndrome/diagnosis , Autoantibodies , Cardiolipins , Female , Humans , Immunoglobulin G , Immunoglobulin M , Infant, Newborn , Lupus Coagulation Inhibitor , Pregnancy , Pregnant Women , Prospective Studies , SARS-CoV-2 , Thrombosis/complications , beta 2-Glycoprotein I
9.
Viruses ; 15(4)2023 04 20.
Article in English | MEDLINE | ID: covidwho-2302988

ABSTRACT

Numerous studies have focused on inflammation-related markers to understand COVID-19. In this study, we performed a comparative analysis of spike (S) and nucleocapsid (N) protein-specific IgA, total IgG and IgG subclass response in COVID-19 patients and compared this to their disease outcome. We observed that the SARS-CoV-2 infection elicits a robust IgA and IgG response against the N-terminal (N1) and C-terminal (N3) region of the N protein, whereas we failed to detect IgA antibodies and observed a weak IgG response against the disordered linker region (N2) in COVID-19 patients. N and S protein-specific IgG1, IgG2 and IgG3 response was significantly elevated in hospitalized patients with severe disease compared to outpatients with non-severe disease. IgA and total IgG antibody reactivity gradually increased after the first week of symptoms. Magnitude of RBD-ACE2 blocking antibodies identified in a competitive assay and neutralizing antibodies detected by PRNT assay correlated with disease severity. Generally, the IgA and total IgG response between the discharged and deceased COVID-19 patients was similar. However, significant differences in the ratio of IgG subclass antibodies were observed between discharged and deceased patients, especially towards the disordered linker region of the N protein. Overall, SARS-CoV-2 infection is linked to an elevated blood antibody response in severe patients compared to non-severe patients. Monitoring of antigen-specific serological response could be an important tool to accompany disease progression and improve outcomes.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Immunoglobulin A , Immunoglobulin M , Spike Glycoprotein, Coronavirus
10.
Front Immunol ; 14: 1146702, 2023.
Article in English | MEDLINE | ID: covidwho-2301521

ABSTRACT

The SARS-CoV-2 pandemic enables the analysis of immune responses induced against a novel coronavirus infecting immunologically naïve individuals. This provides an opportunity for analysis of immune responses and associations with age, sex and disease severity. Here we measured an array of solid-phase binding antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the ISARIC4C cohort and characterised their correlation with peak disease severity during acute infection and early convalescence. Overall, the responses in a Double Antigen Binding Assay (DABA) for antibody to the receptor binding domain (anti-RBD) correlated well with IgM as well as IgG responses against viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also correlated with nAb. As we and others reported previously, there is greater risk of severe disease and death in older men, whilst the sex ratio was found to be equal within each severity grouping in younger people. In older males with severe disease (mean age 68 years), peak antibody levels were found to be delayed by one to two weeks compared with women, and nAb responses were delayed further. Additionally, we demonstrated that solid-phase binding antibody responses reached higher levels in males as measured via DABA and IgM binding against Spike, NP and S1 antigens. In contrast, this was not observed for nAb responses. When measuring SARS-CoV-2 RNA transcripts (as a surrogate for viral shedding) in nasal swabs at recruitment, we saw no significant differences by sex or disease severity status. However, we have shown higher antibody levels associated with low nasal viral RNA indicating a role of antibody responses in controlling viral replication and shedding in the upper airway. In this study, we have shown discernible differences in the humoral immune responses between males and females and these differences associate with age as well as with resultant disease severity.


Subject(s)
COVID-19 , Male , Humans , Female , Aged , SARS-CoV-2 , Prospective Studies , Antibody Formation , RNA, Viral , Antibodies, Viral , Nucleocapsid Proteins , Hospitals , Patient Acuity , Immunoglobulin M
11.
PeerJ ; 11: e15024, 2023.
Article in English | MEDLINE | ID: covidwho-2290901

ABSTRACT

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19 Testing
12.
J Intern Med ; 293(6): 763-781, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2262133

ABSTRACT

BACKGROUND: Factors influencing SARS-CoV-2 antibody dynamics, transmission, waning and long COVID-19 symptomatology are still not fully understood. METHODS: In the Danish section of the Novo Nordisk Group, we performed a prospective seroepidemiological study during the first and second waves of the COVID-19 pandemic. All employees and their household members (>18 years) were invited to participate in a baseline (June-August 2020), 6-month follow-up (December 2020-January 2021), and 12-month follow-up (August 2021) sampling. In total, 18,614 accepted and provided at least one blood sample and completed a questionnaire regarding socioeconomic background, health status, previous SARS-CoV-2 infection, and persistent symptoms. Total antibody and specific IgM, IgG and IgA levels against recombinant receptor binding domain were tested. RESULTS: At baseline, the SARS-CoV-2-antibody seroprevalence was 3.9%. At 6-month follow-up, the seroprevalence was 9.1%, while at 12-month follow-up, the seroprevalence was 94.4% (after the vaccine roll-out). Male sex and younger age (18-40 years) were significant risk factors for seropositivity. From baseline to the 6-month sampling, we observed a substantial waning of IgM, IgG and IgA levels (p < 0.001), regardless of age, sex and initial antibody level. An increased antibody level was found in individuals infected prior to vaccination compared to vaccinated infection naïves (p < 0.0001). Approximately a third of the seropositive individuals reported one or more persistent COVID-19 symptoms, with anosmia and/or ageusia (17.5%) and fatigue (15.3%) being the most prevalent. CONCLUSION: The study provides a comprehensive insight into SARS-CoV-2 antibody seroprevalence following infection and vaccination, waning, persistent COVID-19 symptomatology and risk factors for seropositivity in large working environments.


Subject(s)
COVID-19 , Humans , Male , Adolescent , Young Adult , Adult , COVID-19/epidemiology , Pandemics , Post-Acute COVID-19 Syndrome , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Working Conditions , Antibodies, Viral , Risk Factors , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
13.
Eur J Pediatr ; 182(3): 1077-1081, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2261106

ABSTRACT

SARS-CoV-2, the responsible virus for the COVID-19 pandemic, has demonstrated neurotropic properties indicated by cases presenting with auditory and vestibular system insults. The expression of ACE-2 receptors in the placenta and the detection of IgM antibodies against the virus in the fetuses of pregnant women suffering from COVID-19 render vertical transmission of the infection to the fetus possible. Thus, our study aims to examine whether, similar to other viruses like CMV, SARS-CoV-2 is responsible for congenital hearing loss. This is a retrospective study in a regional pediatric hospital. The medical records of newborns (n = 111) born by mothers positive for COVID-19 during pregnancy who underwent screening hearing tests with Transient Evoked Otoacoustic Emissions (TEOAE) and Automatic Auditory Brainstem Response (AABR) from February 2020 to June 2022 were reviewed. Neonates with additional aggravating factors for congenital hearing loss were excluded from the study. For the study period, nine mothers were found positive during the first trimester, twenty mothers in the second trimester, and eighty-three mothers in the third trimester. TEOAEs test and AABR test scored PASS bilaterally in all neonates tested. CONCLUSION: Infection with COVID-19 during pregnancy was not a risk factor for hearing loss, similar to other studies. WHAT IS KNOWN: • The pathogenetic mechanism of the viral-induced impairment of the organ of Corti includes direct damage to the hair cells and indirect damage due to the induction of the innate inflammatory response. • Early data suggested that the SARS-CoV-2 virus also has neurotropic properties with manifestations from the sensory epithelia. WHAT IS NEW: • Although the intrauterine infection remains controversial, the expression of the ACE-2 receptor on the placenta and the detection of IgM antibodies, as well as the covid-19 genome in fetuses, make the vertical transmission tenable. • In our study, the newborn hearing screening results indicate that COVID-19 infection during pregnancy is not a risk factor for hearing loss.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural , Hearing Loss , Pregnancy , Child , Humans , Infant, Newborn , Female , Retrospective Studies , Pandemics , COVID-19/diagnosis , Evoked Potentials, Auditory, Brain Stem/physiology , SARS-CoV-2 , Hearing Tests , Hearing Loss/etiology , Hearing Loss/congenital , Mothers , Neonatal Screening/methods , Hearing , Immunoglobulin M
14.
Front Immunol ; 14: 1152522, 2023.
Article in English | MEDLINE | ID: covidwho-2280591

ABSTRACT

Introduction: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.


Subject(s)
COVID-19 , Male , Female , Humans , COVID-19/diagnosis , SARS-CoV-2 , Uganda/epidemiology , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunoglobulin A
15.
Free Radic Res ; 57(1): 30-37, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2279933

ABSTRACT

COVID-19 has been pandemic since 2020 with persistent generation of new variants. Cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), where transmembrane serine protease-2 (TMPRSS2) is essential for viral internalization. We recently reported abundant expression of ACE2 and TMPRSS2 in the oral cavity of humans and mice. Therefore, oral cavity may work for COVID-19 infection gates. Here we undertook to evaluate whether vaccination in the tongue harbors any merit in comparison to subcutaneous injection. Low-temperature plasma (LTP) is the fourth physical state of matters with ionization above gas but at body temperature. LTP provides complex chemistry, eventually supplying oxidative and/or nitrosative stress on the interface. LTP-associated cellular death has been reported to cause apoptosis and/or ferroptosis. However, there is few data available on immunogenicity retention after LTP exposure. We therefore studied the effect of LTP exposure after the injection of keyhole limpet hemocyanin (KLH) or spike 2 protein of SARS-CoV-2 to the tongue of six-week-old male BALB/c mice, compared to subcutaneous vaccination. Whereas LTP did not change the expression of ACE2 and TMPRSS2 in the tongue, repeated LTP exposure after tongue vaccination significantly promoted systemic and specific IgM production at day 11. In contrast, repeated LTP exposure after subcutaneous vaccination of KLH decreased systemic IgM production. Of note, tongue injection produced significantly higher titer of IgM and IgG in the case of KLH. In conclusion, LTP significantly reinforced humoral immunity by IgM after tongue injection. Vaccination to the tongue can be a novel strategy to acquire immediate immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Animals , Mice , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism , Temperature , Tongue/metabolism , Immunoglobulin M
16.
Math Biosci Eng ; 20(5): 8875-8891, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2287882

ABSTRACT

Knowledge of viral shedding remains limited. Repeated measurement data have been rarely used to explore the influencing factors. In this study, a joint model was developed to explore and validate the factors influencing the duration of viral shedding based on longitudinal data and survival data. We divided 361 patients infected with Delta variant hospitalized in Nanjing Second Hospital into two groups (≤ 21 days group and > 21 days group) according to the duration of viral shedding, and compared their baseline characteristics. Correlation analysis was performed to identify the factors influencing the duration of viral shedding. Further, a joint model was established based on longitudinal data and survival data, and the Markov chain Monte Carlo algorithm was used to explain the influencing factors. In correlation analysis, patients having received vaccination had a higher antibody level at admission than unvaccinated patients, and with the increase of antibody level, the duration of viral shedding shortened. The linear mixed-effects model showed the longitudinal variation of logSARS-COV-2 IgM sample/cutoff (S/CO) values, with a parameter estimate of 0.193 and a standard error of 0.017. Considering gender as an influencing factor, the parameter estimate of the Cox model and their standard error were 0.205 and 0.1093 (P = 0.608), the corresponding OR value was 1.228. The joint model output showed that SARS-COV-2 IgM (S/CO) level was strongly associated with the risk of a composite event at the 95% confidence level, and a doubling of SARS-COV-2 IgM (S/CO) level was associated with a 1.38-fold (95% CI: [1.16, 1.72]) increase in the risk of viral non-shedding. A higher antibody level in vaccinated patients, as well as the presence of IgM antibodies in serum, can accelerate shedding of the mutant virus. This study provides some evidence support for vaccine prevention and control of COVID-19 variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Virus Shedding , Immunoglobulin M
17.
Virol J ; 20(1): 57, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2275191

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the performance of ten (10) SARS-CoV-2 serological rapid diagnostic tests in comparison with the WANTAI SARS-CoV-2 Ab ELISA test in a laboratory setting. MATERIALS AND METHODS: Ten (10) SARS-CoV-2 serological rapid diagnostic tests (RDTs) for SARS-CoV-2 IgG/IgM were evaluated with two (2) groups of plasma tested positive for one and negative for the other with the WANTAI SARS-CoV-2 Ab ELISA. The diagnostic performance of the SARS-CoV-2 serological RDTs and their agreement with the reference test were calculated with their 95% confidence intervals. RESULTS: The sensitivity of serological RDTs ranged from 27.39 to 61.67% and the specificity from 93.33 to 100% compared to WANTAI SARS-CoV-2 Ab ELISA test. Of all the tests, two tests (STANDARD Q COVID-19 IgM/IgG Combo SD BIOSENSOR and COVID-19 IgG/IgM Rapid Test (Zhejiang Orient Gene Biotech Co., Ltd)) had a sensitivity greater than 50%. In addition, all ten tests had specificity greater than or equal to 93.33% each. The concordance between RDTs and WANTAI SARS-CoV-2 Ab ELISA test ranged from 0.25 to 0.61. CONCLUSION: The SARS-CoV-2 serological RDTs evaluated show low and variable sensitivities compared to the WANTAI SARS-CoV-2 Ab ELISA test, with however a good specificity. These finding may have implications for the interpretation and comparison of COVID-19 seroprevalence studies depending on the type of test used.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Burkina Faso , Seroepidemiologic Studies , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay , Antibodies, Viral , Serologic Tests , Immunoglobulin M/analysis , Immunoglobulin G , COVID-19 Testing
18.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2275170

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus discovered in December 2019 that causes coronavirus disease 19 (COVID-19) and various vaccinations have been developed. The extent to which COVID-19 infections and/or COVID-19 vaccinations alter antiphospholipid antibodies (aPL) in patients with thromboembolic antiphospholipid syndrome (APS) remains unclear. Eighty-two patients with confirmed thromboembolic APS were included in this prospective non-interventional trial. Blood parameters including lupus anticoagulants, anticardiolipin IgG- and IgM-antibodies, and anti-ß2-glycoprotein I IgG- and IgM-antibodies were assessed prior to and after COVID-19 vaccination and/or COVID-19 infection. No increases in aPL in the total study population were detected. In fact, low but significant decreases were observed for anticardiolipin IgG- and anti-ß2-glycoprotein I IgG-antibodies, while anticardiolipin IgM- and anti-b2-glycoprotein I IgM-antibodies slightly increased only in patients with COVID-19 infection and vaccination. Although the investigated patient group is known to have a high risk of recurrent thrombosis, only one arterial thrombotic event was diagnosed (1.2%, 1/82). This low recurrence rate was probably due to the high vaccination rates prior to infections and a high rate of effective anticoagulation. Our data show that COVID-19 infections and/or vaccinations do not deteriorate the clinical course of anticoagulated thromboembolic APS patients.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Humans , Antibodies, Antiphospholipid , Prospective Studies , COVID-19 Vaccines , COVID-19/complications , beta 2-Glycoprotein I , SARS-CoV-2 , Autoantibodies , Immunoglobulin G , Immunoglobulin M
19.
Front Immunol ; 14: 1113194, 2023.
Article in English | MEDLINE | ID: covidwho-2274909

ABSTRACT

There is an urgent need for better immunoassays to measure antibody responses as part of immune-surveillance activities and to profile immunological responses to emerging SARS-CoV-2 variants. We optimised and validated an in-house conventional ELISA to identify and quantify SARS-CoV-2 spike- (S-), receptor binding domain- (RBD-), and nucleoprotein- (N-) directed IgG, IgM, and IgA binding antibodies in the Ugandan population and similar settings. Pre- and post-pandemic specimens were used to compare the utility of mean ± 2SD, mean ± 3SD, 4-fold above blanks, bootstrapping, and receiver operating characteristic (ROC) analyses in determining optimal cut-off optical densities at 450 nm (OD) for discriminating between antibody positives and negatives. "Limits of detection" (LOD) and "limits of quantitation" (LOQ) were validated alongside the assay's uniformity, accuracy, inter-assay and inter-operator precision, and parallelism. With spike-directed sensitivity and specificity of 95.33 and 94.15%, respectively, and nucleoprotein sensitivity and specificity of 82.69 and 79.71%, ROC was chosen as the best method for determining cutoffs. Accuracy measurements were within the expected CV range of 25%. Serum and plasma OD values were highly correlated (r = 0.93, p=0.0001). ROC-derived cut-offs for S-, RBD-, and N-directed IgG, IgM, and IgA were 0.432, 0.356, 0.201 (S), 0.214, 0.350, 0.303 (RBD), and 0.395, 0.229, 0.188 (N). The sensitivity and specificity of the S-IgG cut-off were equivalent to the WHO 20/B770-02 S-IgG reference standard at 100% level. Spike negative IgG, IgM, and IgA ODs corresponded to median antibody concentrations of 1.49, 3.16, and 0 BAU/mL, respectively, consistent with WHO low titre estimates. Anti-spike IgG, IgM, and IgA cut-offs were equivalent to 18.94, 20.06, and 55.08 BAU/mL. For the first time, we provide validated parameters and cut-off criteria for the in-house detection of subclinical SARS-CoV-2 infection and vaccine-elicited binding antibodies in the context of Sub-Saharan Africa and populations with comparable risk factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Uganda , Immunoglobulin A , Antibodies, Viral , Immunoglobulin G , Enzyme-Linked Immunosorbent Assay , Immunoglobulin M
20.
Front Immunol ; 14: 1055429, 2023.
Article in English | MEDLINE | ID: covidwho-2274619

ABSTRACT

Importance: The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives: 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods: We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results: Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions: Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Diagnostic Techniques and Procedures , Antibodies, Neutralizing , Breakthrough Infections , COVID-19 Vaccines , Immunoglobulin M , COVID-19 Testing
SELECTION OF CITATIONS
SEARCH DETAIL