Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 858
Filter
1.
PLoS One ; 17(2): e0262784, 2022.
Article in English | MEDLINE | ID: covidwho-1793538

ABSTRACT

INTRODUCTION: Even if now we have available the weapon of vaccination against SARS-CoV-2, the patients with cancer remains a very frail population in which frequently the immunologic response to vaccination may be impaired. In this setting, the SARS-CoV-2 infection screening retains a great value. However, there are still limited data on the feasibility and efficacy of combined screening procedures to assess the prevalence of SARS-CoV-2 infection (including asymptomatic cases) in cancer outpatients undergoing antineoplastic therapy. PATIENTS AND RESULTS: From May 1, 2020, to June 15, 2020, during the first wave of SARS-CoV-2 pandemic, 860 consecutive patients, undergoing active anticancer therapy, were evaluated and tested for SARS-CoV-2 with a combined screening procedure, including a self-report questionnaire, a molecular nasopharyngeal swab (NPS) and a rapid serological immunoassay (for anti-SARS-CoV-2 IgG/IgM antibodies). The primary endpoint of the study was to estimate the prevalence of SARS-CoV-2 infection (including asymptomatic cases) in consecutive and unselected cancer outpatients by a combined screening modality. A total of 2955 SARS-CoV-2 NPS and 860 serological tests, in 475 patients with hematologic cancers and in 386 with solid tumors, were performed. A total of 112 (13%) patients self-reported symptoms potentially COVID-19 related. In 1/860 cases (< 1%) SARS-CoV-2 NPS was positive and in 14 cases (1.62%) the specific serological test was positive (overall prevalence of SARS-CoV-2 infection 1.62%). Of the 112 cases who declared symptoms potentially COVID-19-related, only 2.7% (3/112) were found SARS-CoV-2 positive. CONCLUSIONS: This is the largest study reporting the feasibility of a combined screening procedure (including triage, NPS and serologic test) to evaluate the prevalence of SARS-CoV-2 infection in cancer patients receiving active therapy, during the first epidemic wave and under the restrictive lockdown measures, in one of the active areas of the SARS-CoV-2 circulation. Lacking specific recommendations for the detection of asymptomatic SARS-CoV-2 cases, a combined diagnostic screening might be more effective to detect the exact prevalence of SARS-CoV-2 in neoplastic patient population. The prevalence can obviously change according to the territorial context, the entity of the restrictive measures adopted and the phase of the epidemic curve. However, its exact and real-time knowledge could be important to balance risks/benefits of oncologic treatments, avoiding (if the prevalence is low) the reduction of dose intensity or the selection of less intensive (but also less effective) anti-cancer therapies.


Subject(s)
COVID-19/diagnosis , Neoplasms/complications , Neoplasms/virology , Adult , Aged , Aged, 80 and over , Antibodies, Viral , Asymptomatic Infections/epidemiology , COVID-19/complications , Communicable Disease Control , Comorbidity , Diagnostic Screening Programs/trends , Female , Humans , Immunoglobulin G , Immunoglobulin M , Incidence , Italy/epidemiology , Male , Middle Aged , Nasopharynx/virology , Prevalence , SARS-CoV-2/pathogenicity , Serologic Tests
2.
Rev Esp Sanid Penit ; 24(1): 15-22, 2022.
Article in English | MEDLINE | ID: covidwho-1786416

ABSTRACT

OBJECTIVES: To describe the clinical and epidemiological characteristics of inmates who were infected and died from COVID-19 in Peruvian prisons from April to October 2020. MATERIAL AND METHOD: Descriptive, cross-sectional, retrospective study with a secondary data source. All the inmates who were infected and died from COVID-19 in Peruvian prisons during the study period were considered. The information was collected through the validated data collection sheet and was analyzed with descriptive statistics applying the SPSS v26 software. RESULTS: 37,103 (42.3%) inmates were analyzed out of a prison population of 87,754. All of them reactive to the rapid test, with a mean age of 39.9 ± 12.6 years; 95.5% were male. 60.1% were IgG reactive; 36.1% were IgM/IgG reactive and 3.8% were IgM reactive. 20.1% of reactive inmates had COVID-19 symptoms at the time of testing. The most frequent symptoms were headache (55.6%), general malaise (49.7%), fever (49.0%) and cough (48.0%). Among the risk factors for COVID-19 were: age over 60 years (8.4%), high blood pressure (2.8%) and diabetes mellitus (2.4%). 445 deaths were registered. Total fatality reached 1.2% of the number of infected. The highest number of deaths was recorded in April and May (89 and 162, respectively). DISCUSSION: The study findings imply different approaches to managing epidemics in the prison context compared to the general population. The short and long term scenarios are uncertain, but the need to reorganize the prison health system, and to prioritise and modernise it are evident. The long-delayed reform of the prison system and the measures that set out to contain the spread of the COVID-19 disease in prisons are related processes in this regard.


Subject(s)
COVID-19 , Prisoners , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Immunoglobulin G , Immunoglobulin M , Male , Middle Aged , Peru/epidemiology , Prisons , Retrospective Studies
3.
Front Public Health ; 10: 832003, 2022.
Article in English | MEDLINE | ID: covidwho-1785443

ABSTRACT

Estimating the prevalence of SARS-CoV-2 antibody seropositivity among health care workers (HCWs) is crucial. In this study, the seroprevalence of anti-SARS-CoV-2 antibodies among HCWs of five hospitals of Tehran, Iran with high COVID-19 patient's referrals from April to June, 2020, was assessed. In this cross-sectional study, HCWs from three public and two private hospitals, selected randomly as a pilot, were included. Participants were asked questions on their demographic characteristics, medical history, hospital role, and usage of personal protective equipment (PPE). Iran FDA-approved SARS-CoV-2 ELISA kits were used to detect IgG and IgM antibodies in blood samples. The seroprevalence was estimated on the basis of ELISA test results and adjusted for test performance. Among the 2,065 participants, 1,825 (88.4%) and 240 (11.6%) HCWs were recruited from public and private hospitals, respectively. A total of 340 HCWs were tested positive for SARS-CoV-2-specific IgG or IgM antibodies, and 17.9% of seropositive individuals were asymptomatic. The overall test performance-adjusted seroprevalence estimate among HCWs was 22.6 (95% CI: 20.2-25.1), and PPE usage was significantly higher among HCWs of public vs. private hospitals (66.5 vs. 20.0%). This study found that seroprevalence of SARS-CoV-2 among HCWs was higher in private hospitals (37.0%; 95% CI: 28.6-46.2) than public hospitals (20.7%; 95% CI: 18.2-23.3), and also highest among assistant nurses and nurses, and lowest among janitor or superintendent categories. The PPE usage was especially suboptimal among HCWs in private hospitals. Continued effort in access to adequate PPE and regular screening of hospital staff for detecting asymptomatic personnel, especially during the upcoming wave of infection, are warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Hospitals, Public , Humans , Immunoglobulin G , Immunoglobulin M , Iran/epidemiology , Referral and Consultation , Seroepidemiologic Studies
4.
Klin Lab Diagn ; 65(11): 688-692, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-1780383

ABSTRACT

The study presents the results of the creation and evaluation of the diagnostic characteristics of the rapid immunochromatographic test for the qualitative detection and differentiation of IgM/IgG antibodies to SARS-CoV-2 in human serum, plasma, and whole blood "ИХА-COVID-19-IgM / IgG". Have been tested some samples without antibodies to SARS-CoV-2 and a samples with two and one type of specific antibodies. The coincidence of the results of immunochromatographic analysis with the results of the immunochemiluminescent method was 87.2%. Test kit can be use as the rapid diagnostic test in the context of the COVID-19 pandemic and to assess the immune status of convalescents.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoassay , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Humans
5.
Front Immunol ; 13: 830715, 2022.
Article in English | MEDLINE | ID: covidwho-1779940

ABSTRACT

Early indications of the likelihood of severe coronavirus disease 2019 COVID-19 can influence treatments and could improve clinical outcomes. However, knowledge on the prediction markers of COVID-19 fatality risks remains limited. Here, we analyzed and quantified the reactivity of serum samples from acute (non-fatal and fatal) and convalescent COVID-19 patients with the spike surface glycoprotein (S protein) and nucleocapsid phosphoprotein (N protein) SARS-CoV-2 peptide libraries. Cytokine activation was also analyzed. We demonstrated that IgM from fatal COVID-19 serum reacted with several N protein peptides. In contrast, IgM from non-fatal serum reacted more with S protein peptides. Further, higher levels of pro-inflammatory cytokines were found in fatal COVID-19 serum compared to non-fatal. Many of these cytokines were pro-inflammatory and chemokines. Differences in IgG reactivity from fatal and non-fatal COVID-19 sera were also demonstrated. Additionally, the longitudinal analysis of IgG reactivity with SARS-CoV-2 S and N protein identified peptides with the highest longevity in humoral immune response. Finally, using IgM antibody reactivity with S and N SARS-CoV-2 peptides and selected cytokines, we have identified a panel of biomarkers specific to patients with a higher risk of fatal COVID-19 compared with that of patients who survive. This panel could be used for the early prediction of COVID-19 fatality risk.


Subject(s)
COVID-19 , Antibodies, Viral , Biomarkers , Cytokines , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Front Cell Infect Microbiol ; 12: 843463, 2022.
Article in English | MEDLINE | ID: covidwho-1779935

ABSTRACT

Background: Since the outbreak of COVID-19, a series of preventive and control measures in China have been used to effectively curb the spread of COVID-19. This study aimed to analyze the epidemiological characteristics of Mycoplasma pneumoniae (MP) and Chlamydia pneumoniae (CP) in hospitalized children with acute respiratory tract infection during the COVID-19 pandemic. Methods: MP IgM antibody and CP IgM antibody were detected in all hospitalized children due to acute respiratory tract infection in the Children's Hospital Affiliated to Zhejiang University from January 2019 to December 2020. These data were compared between 2019 and 2020 based on age and month. Results: The overall detection rate of MP and CP in 2020 was significantly lower than that in 2019 (MP: 21.5% vs 32.9%, P<0.001; CP: 0.3% vs 0.9%, P<0.001). This study found a 4-fold reduction in the number of children positive for MP and a 7.5-fold reduction in the number of children positive for CP from 2019 to 2020. The positive cases were concentrated in children aged >1 year old. In 2019, the positive rate of MP was detected more commonly in children 3 years of age or older than in younger children. In 2020, the higher positive rate of MP reached a peak in the 3- to 6-year age group (35.3%). CP was detected predominantly in children aged 6 years older in 2019 and 2020, with positive rates of 4.8% and 2.6%, respectively. Meanwhile, the positive rates of MP in 2019 were detected more commonly in July, August and September, with 47.2%, 46.7% and 46.3%, respectively. Nevertheless, the positive rates of MP from February to December 2020 apparently decreased compared to those in 2019. The positive rates of CP were evenly distributed throughout the year, with 0.5%-1.6% in 2019 and 0.0%-2.1% in 2020. Conclusions: A series of preventive and control measures for SARS-CoV-2 during the COVID-19 pandemic can not only contain the spread of SARS-CoV-2 but also sharply improve the infection of other atypical pathogens, including MP and CP.


Subject(s)
COVID-19 , Chlamydophila Infections , Chlamydophila pneumoniae , Pneumonia, Mycoplasma , Respiratory Tract Infections , Aged , COVID-19/epidemiology , Child , Child, Hospitalized , Chlamydophila Infections/epidemiology , Epidemiologic Studies , Humans , Immunoglobulin M , Infant , Mycoplasma pneumoniae , Pandemics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2
7.
PLoS One ; 17(4): e0265820, 2022.
Article in English | MEDLINE | ID: covidwho-1779758

ABSTRACT

INTRODUCTION: The rapid expansion of the novel SARS-CoV-2 virus has raised serious public health concerns due to the possibility of misdiagnosis in regions where arboviral diseases are endemic. We performed the first study in northern Peru to describe the detection of SARS-CoV-2 IgM antibodies in febrile patients with a suspected diagnosis of dengue and chikungunya fever. MATERIALS AND METHODS: A consecutive cross-sectional study was performed in febrile patients attending primary healthcare centers from April 2020 through March 2021. Patients enrolled underwent serum sample collection for the molecular and serological detection of DENV and CHIKV. Also, serological detection of IgM antibodies against SARS-CoV-2 was performed. RESULTS: 464 patients were included during the study period, of which (40.51%) were positive for one pathogen, meanwhile (6.90%) presented co-infections between 2 or more pathogens. The majority of patients with monoinfections were positive for SARS-CoV-2 IgM with (73.40%), followed by DENV 18.09% and CHIKV (8.51%). The most frequent co-infection was DENV + SARS-CoV-2 with (65.63%), followed by DENV + CHIKV and DENV + CHIKV + SARS-CoV-2, both with (12.50%). The presence of polyarthralgias in hands (43.75%, p<0.01) and feet (31.25%, p = 0.05) were more frequently reported in patients with CHIKV monoinfection. Also, conjunctivitis was more common in patients positive for SARS-CoV-2 IgM (11.45%, p<0.01). The rest of the symptoms were similar among all the study groups. CONCLUSION: SARS-CoV-2 IgM antibodies were frequently detected in acute sera from febrile patients with a clinical suspicion of arboviral disease. The presence of polyarthralgias in hands and feet may be suggestive of CHIKV infection. These results reaffirm the need to consider SARS-CoV-2 infection as a main differential diagnosis of acute febrile illness in arboviruses endemic areas, as well as to consider co-infections between these pathogens.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Antibodies, Viral , Arthralgia , COVID-19/diagnosis , COVID-19/epidemiology , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Cross-Sectional Studies , Dengue/diagnosis , Dengue/epidemiology , Fever/diagnosis , Humans , Immunoglobulin M , Peru/epidemiology , SARS-CoV-2 , Zika Virus Infection/epidemiology
8.
Klin Lab Diagn ; 66(8): 472-479, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1780504

ABSTRACT

Test kit for detection of specific IgM to SARS-CoV-2 by immune blotting in the «Line blot¼ format has been developed. A preliminary study of diagnostic effectivity on clinical samples of blood serum from patients with COVID-19 and healthy donors showed its high sensitivity and specificity. The new test kit allows to detect IgM to all four structural antigens of SARS-CoV-2 and can be used as a confirmatory test to verify indeterminant screening results in laboratory etiological diagnosis of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity
9.
Klin Lab Diagn ; 66(4): 210-212, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1780502

ABSTRACT

To study the diagnostic characteristics of test systems for detecting antibodies to SARS-Cov-2. We studied the diagnostic characteristics of two test systems for detecting antibodies to SARS-Cov-2, registered in the Russian Federation. The first test system is a kit for detecting total antibodies to SARS-Cov-2 using immunochemiluminescence analysis on the «Cobas e 411¼ analyzer («Roche Diagnostics¼, Germany). The second test system is a kit for detecting IgM and IgG to SARS-Cov-2 («Core Technology Co., Ltd¼, China) by immunochromatographic analysis. The biological material for the study was blood serum. We assessed: diagnostic sensitivity, diagnostic specificity, and predictive value of positive and negative results. In the test system for detecting total antibodies to SARS-CoV-2, using an IHLA, the diagnostic sensitivity and specificity were 100%; the predictive value of positive and negative results was 100%. In the test system for the detection of IgM and IgG to Sars-CoV-2, using IHA, diagnostic sensitivity for IgM and IgG were 100%; diagnostic specificity for IgM - 60%, for IgG - 72%; predictive value of a positive result for IgM - 60%, IgG - 68,18%; predictive value of negative results for IgM and IgG - 100%. The best diagnostic characteristics were found in the test system for the detection of total antibodies to SARS-Cov-2, which must be taken into account when deciding whether to purchase test systems for the detection of antibodies to SARS-Cov-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Immunoglobulin M , Russia , Sensitivity and Specificity , Serologic Tests
10.
Front Immunol ; 13: 770982, 2022.
Article in English | MEDLINE | ID: covidwho-1775662

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike protein (S) of SARS-CoV-2 is a major target for diagnosis and vaccine development because of its essential role in viral infection and host immunity. Currently, time-dependent responses of humoral immune system against various S protein epitopes are poorly understood. In this study, enzyme-linked immunosorbent assay (ELISA), peptide microarray, and antibody binding epitope mapping (AbMap) techniques were used to systematically analyze the dynamic changes of humoral immune responses against the S protein in a small cohort of moderate COVID-19 patients who were hospitalized for approximately two months after symptom onset. Recombinant truncated S proteins, target S peptides, and random peptides were used as antigens in the analyses. The assays demonstrated the dynamic IgM- and IgG recognition and reactivity against various S protein epitopes with patient-dependent patterns. Comprehensive analysis of epitope distribution along the spike gene sequence and spatial structure of the homotrimer S protein demonstrated that most IgM- and IgG-reactive peptides were clustered into similar genomic regions and were located at accessible domains. Seven S peptides were generally recognized by IgG antibodies derived from serum samples of all COVID-19 patients. The dynamic immune recognition signals from these seven S peptides were comparable to those of the entire S protein or truncated S1 protein. This suggested that the humoral immune system recognized few conserved S protein epitopes in most COVID-19 patients during the entire duration of humoral immune response after symptom onset. Furthermore, in this cohort, individual patients demonstrated stable immune recognition to certain S protein epitopes throughout their hospitalization period. Therefore, the dynamic characteristics of humoral immune responses to S protein have provided valuable information for accurate diagnosis and immunotherapy of COVID-19 patients.


Subject(s)
COVID-19 , Antibodies, Viral , Epitopes , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Virol J ; 19(1): 24, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1770554

ABSTRACT

INTRODUCTION: In this work, six SARS-CoV-2-specific antibody assays were evaluated, namely, two pan-immunoglobulin (pan-Ig) assays [Roche Elecsys Anti-SARS-CoV-2 (named "Elecsys" in this study) and the PerkinElmer SuperFlex™ Anti-SARS-CoV-2 Ab Assay (SuperFlex_Ab)], two IgM assays [SuperFlex™ Anti-SARS-CoV-2 IgM Assay (SuperFlex_IgM) and YHLO iFlash-SARS-CoV-2 IgM (iFlash_IgM)], and two IgG assays [SuperFlex™ Anti-SARS-CoV-2 IgG Assay (SuperFlex_IgG) and iFlash-SARS-CoV-2 IgG (iFlash_IgG)]. Combination assays of SuperFlex™ (SuperFlex_any) and iFlash (iFlash_any) were also evaluated. METHODS: A total of 438 residual serum samples from 54 COVID-19 patients in the COVID-19 group and 100 samples from individuals without evidence of SARS-CoV-2 infection in the negative control group were evaluated. RESULTS: In the early stage of COVID-19 infection, within 14 days of symptom onset, the seropositive rate was lower than that of the late stage 15 days after onset (65.4% vs 99.6%). In the total period, the pan-Ig and IgG assays had higher sensitivity (90.8-95.3%) than the IgM assays (36.5-40.7%). SuperFlex_Ab and SuperFlex_any had higher sensitivity than Elecsys and SuperFlex_IgG (p < 0.05). The specificity of all the assays was 100%, except for SuperFlex_IgM (99.0%). The concordance rate between each assay was higher (96.4-100%) in the late stage than in the early stage (77.4-98.1%). CONCLUSION: For the purpose of COVID-19 diagnosis, antibody testing should be performed 15 days after onset. For the purpose of epidemiological surveillance, highly sensitive assays should be used as much as possible, such as SuperFlex_Ab, iFlash_IgG and their combination. IgM assays were not suitable for these purposes.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19 , COVID-19/diagnosis , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , SARS-CoV-2/immunology , Sensitivity and Specificity
13.
BMC Infect Dis ; 22(1): 149, 2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1745491

ABSTRACT

BACKGROUND: COVID-19 is a multi-system infection with emerging evidence-based antiviral and anti-inflammatory therapies to improve disease prognosis. However, a subset of patients with COVID-19 signs and symptoms have repeatedly negative RT-PCR tests, leading to treatment hesitancy. We used comparative serology early in the COVID-19 pandemic when background seroprevalence was low to estimate the likelihood of COVID-19 infection among RT-PCR negative patients with clinical signs and/or symptoms compatible with COVID-19. METHODS: Between April and October 2020, we conducted serologic testing of patients with (i) signs and symptoms of COVID-19 who were repeatedly negative by RT-PCR ('Probables'; N = 20), (ii) signs and symptoms of COVID-19 but with a potential alternative diagnosis ('Suspects'; N = 15), (iii) no signs and symptoms of COVID-19 ('Non-suspects'; N = 43), (iv) RT-PCR confirmed COVID-19 patients (N = 40), and (v) pre-pandemic samples (N = 55). RESULTS: Probables had similar seropositivity and levels of IgG and IgM antibodies as propensity-score matched RT-PCR confirmed COVID-19 patients (60.0% vs 80.0% for IgG, p-value = 0.13; 50.0% vs 72.5% for IgM, p-value = 0.10), but multi-fold higher seropositivity rates than Suspects and matched Non-suspects (60.0% vs 13.3% and 11.6% for IgG; 50.0% vs 0% and 4.7% for IgM respectively; p-values < 0.01). However, Probables were half as likely to receive COVID-19 treatment than the RT-PCR confirmed COVID-19 patients with similar disease severity. CONCLUSIONS: Findings from this study indicate a high likelihood of acute COVID-19 among RT-PCR negative with typical signs/symptoms, but a common omission of COVID-19 therapies among these patients. Clinically diagnosed COVID-19, independent of RT-PCR positivity, thus has a potential vital role in guiding treatment decisions.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/drug therapy , Humans , Immunoglobulin M , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Seroepidemiologic Studies
14.
J Transl Med ; 20(1): 129, 2022 03 16.
Article in English | MEDLINE | ID: covidwho-1745447

ABSTRACT

Autoimmunity has emerged as a characteristic of the post-COVID syndrome (PCS), which may be related to sex. In order to further investigate the relationship between SARS-CoV-2 and autoimmunity in PCS, a clinical and serological assessment on 100 patients was done. Serum antibody profiles against self-antigens and infectious agents were evaluated by an antigen array chip for 116 IgG and 104 IgM antibodies. Thirty pre-pandemic healthy individuals were included as a control group. The median age of patients was 49 years (IQR: 37.8 to 55.3). There were 47 males. The median post-COVID time was 219 (IQR: 143 to 258) days. Latent autoimmunity and polyautoimmunity were found in 83% and 62% of patients, respectively. Three patients developed an overt autoimmune disease. IgG antibodies against IL-2, CD8B, and thyroglobulin were found in more than 10% of the patients. Other IgG autoantibodies, such as anti-interferons, were positive in 5-10% of patients. Anti-SARS-CoV-2 IgG antibodies were found in > 85% of patients and were positively correlated with autoantibodies, age, and body mass index (BMI). Few autoantibodies were influenced by age and BMI. There was no effect of gender on the over- or under-expression of autoantibodies. IgG anti-IFN-λ antibodies were associated with the persistence of respiratory symptoms. In summary, autoimmunity is characteristic of PCS, and latent autoimmunity correlates with humoral response to SARS-CoV-2.


Subject(s)
Autoimmunity , COVID-19 , Adult , Antibodies, Viral/blood , Humans , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2
15.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: covidwho-1742932

ABSTRACT

Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the ß-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Cross Reactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Vaccination
16.
Eur J Intern Med ; 98: 77-82, 2022 04.
Article in English | MEDLINE | ID: covidwho-1739692

ABSTRACT

BACKGROUND: COVID-19 pandemic has generated a million deaths worldwide. The efficiency of the immune system can modulate individual vulnerability with variable outcomes. However, the relationships between disease severity and the titer of antibodies produced against SARS-CoV-2 in non-vaccinated, recently infected subjects need to be fully elucidated. METHODS: A total of 99 patients admitted to a COVID-unit underwent clinical assessment and measurement of serum levels of anti-spike protein (S1) IgM, and anti-nucleocapsid protein IgG. Patients were stratified according to the clinical outcome (i.e., discharged at home or in-hospital death). RESULTS: Following hospitalization, 18 died during the hospital stay. They were older, had lymphopenia, a higher co-morbidity rate, and longer hospital stay than 81 patients who were discharged after healing. Patients in this latter group had, at hospital admittance, 7.9-fold higher serum concentration of IgM, and 2.4-fold higher IgG levels. Multivariate Cox regression models indicated age and anti-nucleocapsid protein IgG concentration at admission as independently associated with the risk of in-hospital death. CONCLUSIONS: An efficient immunological response during the early phase of COVID-19 protects from mortality, irrespective of age. Advanced age is a critical risk factor for poor outcome in infected subjects. Further studies must explore potential therapeutic strategies able to restore a valid functional humoral immunity in elderly patients with poor antibody response during the early stage of COVID-19 infection.


Subject(s)
COVID-19 , Aged , Antibodies, Viral , Hospital Mortality , Humans , Immunoglobulin G , Immunoglobulin M , Pandemics , SARS-CoV-2
17.
MMWR Morb Mortal Wkly Rep ; 71(10): 375-377, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1737447

ABSTRACT

The diagnosis of dengue disease, caused by the dengue virus (DENV) (a flavivirus), often requires serologic testing during acute and early convalescent phases of the disease. Some symptoms of DENV infection, such as nonspecific fever, are similar to those caused by infection with SARS-CoV-2, the virus that causes COVID-19. In studies with few COVID-19 cases, positive DENV immunoglobulin M (IgM) results were reported with various serologic tests, indicating possible cross-reactivity in these tests for DENV and SARS-CoV-2 infections (1,2). DENV antibodies can cross-react with other flaviviruses, including Zika virus. To assess the potential cross-reactivity of SARS-CoV-2, DENV, and Zika virus IgM antibodies, serum specimens from 97 patients from Puerto Rico and 12 U.S.-based patients with confirmed COVID-19 were tested using the DENV Detect IgM Capture enzyme-linked immunosorbent assay (ELISA) (InBios International).* In addition, 122 serum specimens from patients with confirmed dengue and 121 from patients with confirmed Zika virus disease (all from Puerto Rico) were tested using the SARS-CoV-2 pan-Ig Spike Protein ELISA (CDC).† Results obtained for DENV, Zika virus IgM, and SARS-CoV-2 antibodies indicated 98% test specificity and minimal levels of cross-reactivity between the two flaviviruses and SARS-CoV-2. These findings indicate that diagnoses of dengue or Zika virus diseases with the serological assays described in this report are not affected by COVID-19, nor do dengue or Zika virus diseases interfere with the diagnosis of COVID-19.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Serologic Tests , Zika Virus/immunology , COVID-19/diagnosis , Cross Reactions/immunology , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Puerto Rico , Sensitivity and Specificity , United States , Zika Virus Infection/diagnosis
18.
BMC Infect Dis ; 22(1): 240, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1736349

ABSTRACT

BACKGROUND: The duration of antibodies against SARS-CoV-2 in Covid-19 patients remains uncertain. Longitudinal serological studies are needed to prevent disease and transmission of the virus. METHODS: In 2020, 414 blood samples were tested, obtained from 157 confirmed Covid-19 patients, in a prospective cohort study in Shanghai. RESULTS: The seropositive rate of IgM peaked at 40.5% (17/42) within 1 month after illness onset and then declined. The seropositive rate of IgG was 90.6% (58/64) after 2 months, remained above 85% from 2 to 9 months and was 90.9% (40/44) after 9 months. Generalized estimating equations models suggested that IgM (P < 0.001) but not IgG significantly decreased over time. Age ≥ 40 years (adjusted odds ratio [aOR] 4.531; 95% confidence interval [CI] 1.879-10.932), and cigarette smoking (aOR 0.344; 95% CI 0.124-0.951) were associated with IgG, and age ≥ 40 years (aOR 2.820; 95% CI 1.579-5.036) was associated with IgM. After seroconversion, over 90% and 75.1% of subjects were estimated to remain IgG-positive 220 and 254 days, respectively. Of 1420 self-reported symptoms questionnaires, only 5% reported symptoms 9 months after onset. CONCLUSIONS: In patients with a history of natural infection, anti-SARS-CoV-2 IgG is long-lived, being present for at least 9 months after illness onset. The long duration of natural immunity can mitigate and eliminate Covid-19 and the ongoing pandemic.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , China/epidemiology , Humans , Immunity , Immunoglobulin M , Prospective Studies , SARS-CoV-2
20.
J Vis Exp ; (180)2022 02 16.
Article in English | MEDLINE | ID: covidwho-1732305

ABSTRACT

Multiplex technologies for interrogating multiple biomarkers in concert have existed for several decades; however, methods to evaluate multiple epitopes on the same analyte remain limited. This report describes the development and optimization of a multiplexed immunobead assay for serological testing of common immunoglobulin isotypes (e.g., IgA, IgM, and IgG) associated with an immune response to SARS-CoV-2 infection or vaccination. Assays were accomplished using a flow-based, multiplex fluorescent reader with dual-channel capability. Optimizations focused on analyte capture time, detection antibody concentration, and detection antibody incubation time. Analytical assay performance characteristics (e.g., assay range (including lower and upper limits of quantitation); and intra- and inter-assay precision) were established for either IgG/IgM or IgA/IgM serotype combination in tandem using the 'dual channel' mode. Analyte capture times of 30 min for IgG, 60 min for IgM, and 120 min for IgA were suitable for most applications, providing a balance of assay performance and throughput. Optimal detection antibody incubations at 4 µg/mL for 30 min was observed and are recommended for general applications, given the overall excellent precision (percent coefficient of variance (%CV) ≤ 20%) and sensitivity values observed. The dynamic range for the IgG isotype spanned several orders of magnitude for each assay (Spike S1, Nucleocapsid, and Membrane glycoproteins), which supports robust titer evaluations at a 1:500 dilution factor for clinical applications. Finally, the optimized protocol was applied to monitoring Spike S1 seroconversion for subjects (n = 4) that completed a SARS-CoV-2 vaccine regimen. Within this cohort, Spike S1 IgG levels were observed to reach maximum titers at 14 days following second dose administration, at a much higher (~40-fold) signal intensity than either IgM or IgA isotypes. Interestingly, we observed highly variable Spike S1 IgG titer decay rates that were largely subject-dependent were observed, which will be the topic of future studies.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL