Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783444

ABSTRACT

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , /blood , /therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
J Allergy Clin Immunol ; 149(2): 557-561.e1, 2022 02.
Article in English | MEDLINE | ID: covidwho-1670624

ABSTRACT

BACKGROUND: Patients with some types of immunodeficiency can experience chronic or relapsing infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This leads to morbidity and mortality, infection control challenges, and the risk of evolution of novel viral variants. The optimal treatment for chronic coronavirus disease 2019 (COVID-19) is unknown. OBJECTIVE: Our aim was to characterize a cohort of patients with chronic or relapsing COVID-19 disease and record treatment response. METHODS: We conducted a UK physician survey to collect data on underlying diagnosis and demographics, clinical features, and treatment response of immunodeficient patients with chronic (lasting ≥21 days) or relapsing (≥2 episodes) of COVID-19. RESULTS: We identified 31 patients (median age 49 years). Their underlying immunodeficiency was most commonly characterized by antibody deficiency with absent or profoundly reduced peripheral B-cell levels; prior anti-CD20 therapy, and X-linked agammaglobulinemia. Their clinical features of COVID-19 were similar to those of the general population, but their median duration of symptomatic disease was 64 days (maximum 300 days) and individual patients experienced up to 5 episodes of illness. Remdesivir monotherapy (including when given for prolonged courses of ≤20 days) was associated with sustained viral clearance in 7 of 23 clinical episodes (30.4%), whereas the combination of remdesivir with convalescent plasma or anti-SARS-CoV-2 mAbs resulted in viral clearance in 13 of 14 episodes (92.8%). Patients receiving no therapy did not clear SARS-CoV-2. CONCLUSIONS: COVID-19 can present as a chronic or relapsing disease in patients with antibody deficiency. Remdesivir monotherapy is frequently associated with treatment failure, but the combination of remdesivir with antibody-based therapeutics holds promise.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Immunologic Deficiency Syndromes/therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Aged, 80 and over , Alanine/therapeutic use , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chronic Disease , Female , Humans , Immunization, Passive , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Immunologic Deficiency Syndromes/virology , Lymphocyte Count , Male , Middle Aged , Recombinant Fusion Proteins/administration & dosage , Recurrence , SARS-CoV-2/pathogenicity , Treatment Failure
3.
J Am Soc Nephrol ; 33(2): 259-278, 2022 02.
Article in English | MEDLINE | ID: covidwho-1650730

ABSTRACT

Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.


Subject(s)
COVID-19/etiology , Immunologic Deficiency Syndromes/etiology , Renal Insufficiency, Chronic/complications , Adaptive Immunity , Blood Platelets/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Gastrointestinal Microbiome/immunology , Humans , Immunity, Innate , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/prevention & control , Immunophenotyping , Models, Immunological , Pandemics , Renal Insufficiency, Chronic/immunology , Risk Factors , SARS-CoV-2 , Seroconversion
4.
J Allergy Clin Immunol ; 149(2): 569-578, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587444

ABSTRACT

Our understanding of risk factors and interventions influencing outcomes from coronavirus disease 2019 (COVID-19) has continued to evolve, revealing advances emerging from hypotheses formed at the start of the pandemic. Epidemiologic studies have shown that asthma control, rather than a diagnosis of asthma, is a determinant of COVID-19 severity. Clinical outcomes in patients with primary immunodeficiencies, even in those with impaired cellular immunity, are variable. IL-6 has emerged as a reliable biomarker of COVID-19 severity, and large clinical trials have shown the potential for improving outcomes through inhibition of IL-6 signaling in some patients. Studies of genetic risk factors for severe COVID-19 have also revealed the importance of interferon homeostasis in the defense against severe acute respiratory syndrome coronavirus 2. Because COVID-19 vaccines constitute the primary tool for ending this pandemic, strategies have been developed to address potential allergic and immune-mediated reactions. Here, we discuss advances in our understanding of COVID-19 risk factors and outcomes within the context of allergic and immunologic mechanisms.


Subject(s)
Antiviral Agents/therapeutic use , Asthma/therapy , Biological Products/therapeutic use , COVID-19/therapy , Immunologic Deficiency Syndromes/therapy , SARS-CoV-2/drug effects , Antibodies, Monoclonal/therapeutic use , Asthma/immunology , Asthma/mortality , Asthma/virology , Azetidines/therapeutic use , Biomarkers/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/mortality , Immunologic Deficiency Syndromes/virology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/immunology , Prognosis , Purines/therapeutic use , Pyrazoles/therapeutic use , Risk Factors , SARS-CoV-2/pathogenicity , Sulfonamides/therapeutic use , Survival Analysis , Treatment Outcome
6.
J Clin Immunol ; 41(8): 1709-1722, 2021 11.
Article in English | MEDLINE | ID: covidwho-1474048

ABSTRACT

BACKGROUND: Data on immune responses to SARS-CoV-2 in patients with Primary Antibody Deficiencies (PAD) are limited to infected patients and to heterogeneous cohorts after immunization. METHODS: Forty-one patients with Common Variable Immune Deficiencies (CVID), six patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-receptor binding domain (RBD) antibody production, generation of Spike-specific memory B-cells, and Spike-specific T-cells before vaccination and one week after the second dose of BNT162b2 vaccine. RESULTS: The vaccine induced Spike-specific IgG and IgA antibody responses in all HD and in 20% of SARS-CoV-2 naive CVID patients. Anti-Spike IgG were detectable before vaccination in 4 out 7 CVID previously infected with SARS-CoV-2 and were boosted in six out of seven patients by the subsequent immunization raising higher levels than patients naïve to infection. While HD generated Spike-specific memory B-cells, and RBD-specific B-cells, CVID generated Spike-specific atypical B-cells, while RBD-specific B-cells were undetectable in all patients, indicating the incapability to generate this new specificity. Specific T-cell responses were evident in all HD and defective in 30% of CVID. All but one patient with XLA responded by specific T-cell only. CONCLUSION: In PAD patients, early atypical immune responses after BNT162b2 immunization occurred, possibly by extra-follicular or incomplete germinal center reactions. If these responses to vaccination might result in a partial protection from infection or reinfection is now unknown. Our data suggests that SARS-CoV-2 infection more effectively primes the immune response than the immunization alone, possibly suggesting the need for a third vaccine dose for patients not previously infected.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunologic Deficiency Syndromes/immunology , SARS-CoV-2/immunology , Humans , Immunoglobulin G/blood , Immunologic Memory , Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
Signal Transduct Target Ther ; 6(1): 345, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434094

ABSTRACT

The SARS-CoV-2 infection causes severe immune disruption. However, it is unclear if disrupted immune regulation still exists and pertains in recovered COVID-19 patients. In our study, we have characterized the immune phenotype of B cells from 15 recovered COVID-19 patients, and found that healthy controls and recovered patients had similar B-cell populations before and after BCR stimulation, but the frequencies of PBC in patients were significantly increased when compared to healthy controls before stimulation. However, the percentage of unswitched memory B cells was decreased in recovered patients but not changed in healthy controls upon BCR stimulation. Interestingly, we found that CD19 expression was significantly reduced in almost all the B-cell subsets in recovered patients. Moreover, the BCR signaling and early B-cell response were disrupted upon BCR stimulation. Mechanistically, we found that the reduced CD19 expression was caused by the dysregulation of cell metabolism. In conclusion, we found that SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism, which may provide a new intervention target to cure COVID-19.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Down-Regulation/immunology , Immunologic Deficiency Syndromes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/complications , Chlorocebus aethiops , Female , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/virology , Immunologic Memory , Male , Mice , Mice, Transgenic , Receptors, Antigen, B-Cell/immunology , Vero Cells
9.
Front Immunol ; 12: 721738, 2021.
Article in English | MEDLINE | ID: covidwho-1378191

ABSTRACT

Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.


Subject(s)
B-Lymphocytes , COVID-19/immunology , COVID-19/therapy , Immunologic Deficiency Syndromes/immunology , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , COVID-19/complications , Female , Humans , Immunization, Passive , Immunoglobulins, Intravenous , Immunologic Deficiency Syndromes/complications , Lymphocyte Activation , Lymphopoiesis , SARS-CoV-2 , Viral Load
12.
Transfusion ; 61(8): 2503-2511, 2021 08.
Article in English | MEDLINE | ID: covidwho-1243670

ABSTRACT

In the absence of effective countermeasures, human convalescent plasma has been widely used to treat severe acute respiratory syndrome coronavirus 2, the causative agent of novel coronavirus disease 19 (COVID-19), including among patients with innate or acquired immunosuppression. However, the association between COVID-19-associated mortality in patients with immunosuppression and therapeutic use of convalescent plasma is unknown. We review 75 reports, including one large matched-control registry study of 143 COVID-19 patients with hematological malignancies, and 51 case reports and 23 case series representing 238 COVID-19 patients with immunosuppression. We review clinical features and treatment protocols of COVID-19 patients with immunosuppression after treatment with human convalescent plasma. We also discuss the time course and clinical features of recovery. The available data from case reports and case series provide evidence suggesting a mortality benefit and rapid clinical improvement in patients with several forms of immunosuppression following COVID-19 convalescent plasma transfusion. The utility of convalescent plasma or other forms of antibody therapy in immune-deficient and immune-suppressed patients with COVID-19 warrants further investigation.


Subject(s)
COVID-19/complications , COVID-19/therapy , Immune Tolerance , COVID-19/immunology , Hematologic Neoplasms/complications , Hematologic Neoplasms/immunology , Humans , Immunization, Passive/methods , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/immunology , Organ Transplantation/adverse effects , Treatment Outcome
14.
J Glob Antimicrob Resist ; 24: 106-107, 2021 03.
Article in English | MEDLINE | ID: covidwho-1028294

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus. As of today, no specific treatment has been found COVID-19. Intravenous immunoglobulin (IVIG) is a widely used therapy to prevent life-threatening infections in patients with primary and secondary immune deficiencies and autoimmune/inflammatory conditions. IVIG administration could be beneficial in the treatment of patients with severe COVID-19. In this respect, this presentation aimed to report a case of COVID-19 treated with IVIG.


Subject(s)
COVID-19/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnostic imaging , COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/virology , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/virology , Male , Middle Aged , SARS-CoV-2/isolation & purification
15.
Nat Med ; 27(1): 28-33, 2021 01.
Article in English | MEDLINE | ID: covidwho-1028101

ABSTRACT

COVID-19, caused by SARS-CoV-2 infection, is mild to moderate in the majority of previously healthy individuals, but can cause life-threatening disease or persistent debilitating symptoms in some cases. The most important determinant of disease severity is age, with individuals over 65 years having the greatest risk of requiring intensive care, and men are more susceptible than women. In contrast to other respiratory viral infections, young children seem to be less severely affected. It is now clear that mild to severe acute infection is not the only outcome of COVID-19, and long-lasting symptoms are also possible. In contrast to severe acute COVID-19, such 'long COVID' is seemingly more likely in women than in men. Also, postinfectious hyperinflammatory disease has been described as an additional outcome after SARS-CoV-2 infection. Here I discuss our current understanding of the immunological determinants of COVID-19 disease presentation and severity and relate this to known immune-system differences between young and old people and between men and women, and other factors associated with different disease presentations and severity.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , SARS-CoV-2/physiology , Adaptive Immunity , Adult , Age Factors , Aged , COVID-19/complications , COVID-19/epidemiology , COVID-19/etiology , Child , Female , Humans , Immunity, Innate , Immunologic Deficiency Syndromes/chemically induced , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/virology , Male , SARS-CoV-2/immunology , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/etiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL