Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add filters

Document Type
Year range
1.
Front Immunol ; 12: 761949, 2021.
Article in English | MEDLINE | ID: covidwho-1581340

ABSTRACT

The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer's patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer's patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer's patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.


Subject(s)
COVID-19 , Immunity, Mucosal/immunology , Immunosenescence/immunology , Paneth Cells/immunology , Peyer's Patches/immunology , Animals , Cell Differentiation/immunology , Mice , Mice, Inbred C57BL , SARS-CoV-2
2.
Eur Rev Med Pharmacol Sci ; 25(21): 6719-6730, 2021 11.
Article in English | MEDLINE | ID: covidwho-1524860

ABSTRACT

OBJECTIVE: COVID-19 vaccines have developed quickly, and vaccination programs have started in most countries to fight the pandemic. The aging population is vulnerable to different diseases, also including the COVID-19. A high death rate of COVID-19 was noted from the vulnerable aging population. A present scenario regarding COVID-19 vaccines and vaccination program foraging adults had been discussed. MATERIALS AND METHODS: This paper reviews the current status and future projections till 2050 of the aging population worldwide. It also discusses the immunosenescence and inflammaging issues facing elderly adults and how it affects the vaccinations such as influenza, pneumococcal, and herpes zoster. RESULTS: This paper recommends clinical trials for all approved COVID-19 vaccines targeting the elderly adult population and to project a plan to develop a next-generation COVID-19 vaccine. CONCLUSIONS: The review has mapped the COVID-19 vaccination status from the developed and developing countries for the elderly population. Finally, strategies to vaccinate all elderly adults globally against COVID-19 to enhance longevity has been suggested.


Subject(s)
Aging , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Humans , Immunization Programs , Immunosenescence , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Treatment Outcome
3.
Front Immunol ; 12: 646972, 2021.
Article in English | MEDLINE | ID: covidwho-1438415

ABSTRACT

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: Studies of the insurgence of immunity is at the core of both SARS-CoV-2 vaccine development and therapies. This paper attempts to describe the insurgence (and the span) of immunity in COVID-19 at the population level by developing an in-silico model. We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity to the ACE2 receptor, and age in an artificially infected population on the course of the disease. Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of infected individuals with age-dependent varying degrees of immune competence. We use a parameter set to reproduce known inter-patient variability and general epidemiological statistics. Results: By assuming the viremia at day 30 of the infection to be the proxy for lethality, we reproduce in-silico several clinical observations and identify critical factors in the statistical evolution of the infection. In particular, we evidence the importance of the humoral response over the cytotoxic response and find that the antibody titers measured after day 25 from the infection are a prognostic factor for determining the clinical outcome of the infection. Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of modeling the immune response at individual and population levels. The model developed can explain and interpret observed patterns of infection and makes verifiable temporal predictions. Within the limitations imposed by the simulated environment, this work proposes quantitatively that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability in the infecting viral load and immune competence in the population. In this work, we exemplify how computational modeling of immune response provides an important view to discuss hypothesis and design new experiments, in particular paving the way to further investigations about the duration of vaccine-elicited immunity especially in the view of the blundering effect of immunosenescence.


Subject(s)
COVID-19/immunology , Models, Immunological , SARS-CoV-2/physiology , Antibodies, Viral/blood , COVID-19/epidemiology , Cohort Studies , Computer Simulation , Cytokine Release Syndrome/immunology , Cytokines/blood , Humans , Immunity, Humoral , Immunosenescence , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index , Viral Load
5.
Geriatr Psychol Neuropsychiatr Vieil ; 19(3): 274-278, 2021 Sep 01.
Article in French | MEDLINE | ID: covidwho-1357458

ABSTRACT

Since December 2019, an emerging infectious viral disease implicating a coronavirus SARS-CoV-2 has caused a global pandemic. Elderly people, being more fragile, are the most affected by the severity and lethality of this disease. The NH and LTCU of the Amiens University Hospital registered their first Covid-19 cases in February 2020, which lead to the opening of a Covid-19 dedicated unit and of specific protocol for confinement. This descriptive study was analyzing the prevalence of Covid-19 seroconversion within the NH and the LTCU of the Amiens University Hospital. Both this screening test and the nasopharyngeal swab PCRs were in order to assess the impact of the Covid-19 epidemic in NH and LTCU. On June 15th and 16th, the serological tests for Covid-19 were positive for 146 (66.1%) of the residents tested. The seroconversion rate was significantly different (p < 0.001) between the NH (88.7%) and the LTCU (45.6%). During the epidemic, there was no excess mortality index within the NH and LTCU services of the Amiens University Hospital. Among frail patients, the role of immunosenescence can be discussed to account for the absence of this inflammatory reaction. This study showed that isolating the infected patient in a dedicated unit significantly reduces the risk of seroconversion and contamination compared to isolating them within their own unit.


Subject(s)
COVID-19/diagnosis , Long-Term Care , SARS-CoV-2/immunology , Seroconversion , Aged , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , COVID-19 Serological Testing , Hospitals , Humans , Immunization, Passive , Immunosenescence , Nursing Homes , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Serologic Tests
6.
Ageing Res Rev ; 71: 101422, 2021 11.
Article in English | MEDLINE | ID: covidwho-1356134

ABSTRACT

During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.


Subject(s)
COVID-19 , Immunosenescence , Aged , Aged, 80 and over , Humans , SARS-CoV-2
7.
Aging (Albany NY) ; 13(15): 19920-19941, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1355316

ABSTRACT

Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.


Subject(s)
Aging/immunology , Cellular Senescence/immunology , Immunosenescence , Lymphoid Tissue/immunology , COVID-19/immunology , Humans
8.
Exp Gerontol ; 153: 111497, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1330827

ABSTRACT

INTRODUCTION: The elderly population suffers from the natural process called immunosenescence, which may be related to the high mortality rates it has against the SARS-CoV2 virus, which is why therapies that improve the immune status are required. The combined treatment of the VA-MENGOC-BC® (V-BC) vaccine and the Biomodulina T® (BT) drug could achieve this purpose. This treatment could immunomodulate both the innate and adaptive branches of the immune system simultaneously. OBJECTIVE: To determine the effect of BT and V-BC on the immunomodulation of lymphocyte subpopulations in older adults. METHODS: Our study was carried out in 30 apparently healthy Cuban adults over 65 years of age. The study included three groups of 10 subjects per treatment: a combination of both and the monotherapies. Before and 7 days after treatment, 2 mL of peripheral blood was drawn from each subject. Multiparametric flow cytometry was used to identify lymphocyte subpopulations. For the comparison between the groups, point estimates and the confidence intervals of the Odds Ratio were made. RESULTS: We found that subpopulations of B lymphocytes and natural cytotoxic T (NKT) cells increased only with the administration of BT. Additionally, combination treatments and V-BC did not generate statistically significant immunomodulatory changes in any of the studied lymphocyte subpopulations. CONCLUSIONS: BT presented an immunoenhancing effect on the B and NKT lymphocyte subpopulations of older adults. The three-dose treatment scheme a novel and specific treatment strategy for this formulation. We also were verified that the combined application of V-BC and BT did not have the expected benefits. All these findings suggest that BT administration is a promising approach for immune restoration and to offering protection in elderly patients against COVID-19.


Subject(s)
COVID-19 , Immunosenescence , Aged , Humans , Lymphocyte Subsets , RNA, Viral , SARS-CoV-2
10.
Nat Rev Nephrol ; 17(11): 751-764, 2021 11.
Article in English | MEDLINE | ID: covidwho-1297305

ABSTRACT

Although respiratory failure and hypoxaemia are the main manifestations of COVID-19, kidney involvement is also common. Available evidence supports a number of potential pathophysiological pathways through which acute kidney injury (AKI) can develop in the context of SARS-CoV-2 infection. Histopathological findings have highlighted both similarities and differences between AKI in patients with COVID-19 and in those with AKI in non-COVID-related sepsis. Acute tubular injury is common, although it is often mild, despite markedly reduced kidney function. Systemic haemodynamic instability very likely contributes to tubular injury. Despite descriptions of COVID-19 as a cytokine storm syndrome, levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19. Tissue inflammation and local immune cell infiltration have been repeatedly observed and might have a critical role in kidney injury, as might endothelial injury and microvascular thrombi. Findings of high viral load in patients who have died with AKI suggest a contribution of viral invasion in the kidneys, although the issue of renal tropism remains controversial. An impaired type I interferon response has also been reported in patients with severe COVID-19. In light of these observations, the potential pathophysiological mechanisms of COVID-19-associated AKI may provide insights into therapeutic strategies.


Subject(s)
Acute Kidney Injury/physiopathology , Acute Kidney Injury/virology , COVID-19/physiopathology , Adaptive Immunity/physiology , Biopsy , Complement System Proteins , Drug-Related Side Effects and Adverse Reactions , Endothelium, Vascular/physiopathology , Extracorporeal Membrane Oxygenation , Hematuria/physiopathology , Humans , Immunity, Humoral/physiology , Immunity, Innate/physiology , Immunosenescence , Inflammation/physiopathology , Inflammation/virology , Interferon Type I/physiology , Kidney/pathology , Kidney/virology , Proteinuria/physiopathology , Severity of Illness Index , Viral Load
11.
Viruses ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1289029

ABSTRACT

In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.


Subject(s)
Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , HIV Infections/virology , Vaccines/immunology , Animals , Anti-HIV Agents/therapeutic use , Clinical Trials as Topic , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Immunosenescence , Inflammation , Latent Infection/immunology , Latent Infection/virology , Mice , Vaccines/administration & dosage
12.
J Gerontol Soc Work ; 64(6): 676-691, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1225551

ABSTRACT

COVID-19 has proliferated ageism. The impetus of this article is to show that immunosenescence is a risk factor to COVID-19 and not aging per se. Based on the idea that some older people are also healthier than younger ones, the emphasis of this article is on immunosenescence and not aging as a risk factor of COVID-19 complications. The paper utilizes a biopsychosocial approach to expound on the link between immunosenescence and COVID-19 risk factors. The article explores biological factors such as malnutrition, comorbidities, substance abuse, and sex. It also expands on psychosocial factors such as mental health disorders, homelessness, unemployment, lack of physical exercises, stigma, and discrimination. The article calls for gerontological social work to assume a developmental-clinical social work perspective to prevent the early onset and progression of immunosenescence. It calls for gerontological social work to prevent factors that promote unhealthy aging. The article promotes a preventative stance to practice and not just curative approaches. Treatment involves primary prevention which emphasizes on avoiding the onset of unhealthy aging. It is this approach that gerontological social work should aim also to address in building resilience in the face of pandemics.


Subject(s)
Aging/physiology , COVID-19/epidemiology , Health Behavior , Immunosenescence/physiology , Social Work/organization & administration , Ageism/psychology , Comorbidity , Humans , Nutritional Status , Pandemics , Risk Factors , SARS-CoV-2 , Sex Factors , Social Work/education , Substance-Related Disorders/epidemiology
14.
Pathol Res Pract ; 221: 153417, 2021 May.
Article in English | MEDLINE | ID: covidwho-1157673

ABSTRACT

The COVID-19 (coronavirus disease) pandemic caused by SARS-CoV-2 with its rapid expansion has led to extraordinary implications in our understanding of viral infections and their management globally. In this current scenario of unusual circumstances and public health emergency, the cancer care per se is facing unprecedented challenges. The peculiarity of the SARS-CoV-2 infections is still being uncovered as the pandemic spreads across the populations than showing signs of its curtailment. The review highlights the significance of idiosyncrasy of the SARS-Cov-2 infection especially putting forth the importance of immunosenescence, both in the COVID-19 specific immune response in the infected lungs of the elderly and in the cancer patients infected with SARS-CoV-2.The focus of the article is directed towards demystifying the unparalleled essence of a proprotein convertase, Furin in the biology of the SARS-Cov-2 infection and its role in facilitating viral transmission through expedited cellular entry into alveolar epithelial cells in COVID-19 infected cancer patients. The risk stratification of the cancer treatment and guidelines shaped up by national and international oncology societies in providing uncompromised patient care during the COVID-19 crisis have also been addressed. The global efforts towards vaccination in developing SARS CoV-2 immunity are also discussed in this article.


Subject(s)
COVID-19 , Furin/metabolism , Neoplasms , SARS-CoV-2/physiology , COVID-19/immunology , COVID-19/metabolism , Comorbidity , Humans , Immunosenescence , Neoplasms/epidemiology , Neoplasms/immunology , Virus Internalization
15.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1133309

ABSTRACT

While vaccines directed against the SARS-CoV-2 spike protein will have varying degrees of effectiveness in preventing SARS-CoV-2 infections, the severity of infection will be determined by multiple host factors including the ability of immune cells to lyse virus-infected cells. This review will discuss the complexity of both adaptive and innate immunomes and how a flow-based assay can detect up to 158 distinct cell subsets in the periphery. This assay has been employed to show the effect of age on differences in specific immune cell subsets, and the differences in the immunome between healthy donors and age-matched cancer patients. Also reviewed are the numerous soluble factors, in addition to cytokines, that may vary in the pathogenesis of SARS-CoV-2 infections and may also be employed to help define the effectiveness of a given vaccine or other antiviral agents. Various steroids have been employed in the management of autoimmune adverse events in cancer patients receiving immunotherapeutics and may be employed in the management of SARS-CoV-2 infections. The influence of steroids on multiple immune cells subsets will also be discussed.


Subject(s)
Adaptive Immunity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Age Factors , B7-H1 Antigen/immunology , CD40 Ligand/immunology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cytokines/immunology , Disease Susceptibility , Glucocorticoids/therapeutic use , Granzymes/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunosenescence/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/immunology , Proteome , SARS-CoV-2 , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
16.
BMJ ; 372: n188, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1096979

ABSTRACT

The proportion of the global population aged 65 and older is rapidly increasing. Infections in this age group, most recently with SARS-CoV-2, cause substantial morbidity and mortality. Major improvements have been made in vaccines for older people, either through the addition of novel adjuvants-as in the new recombinant zoster vaccine and an adjuvanted influenza vaccine-or by increasing antigen concentration, as in influenza vaccines. In this article we review improvements in immunization for the three most important vaccine preventable diseases of aging. The recombinant zoster vaccine has an efficacy of 90% that is minimally affected by the age of the person being vaccinated and persists for more than four years. Increasing antigen dose or inclusion of adjuvant has improved the immunogenicity of influenza vaccines in older adults, although the relative effectiveness of the enhanced influenza vaccines and the durability of the immune response are the focus of ongoing clinical trials. Conjugate and polysaccharide pneumococcal vaccines have similar efficacy against invasive pneumococcal disease and pneumococcal pneumonia caused by vaccine serotypes in older adults. Their relative value varies by setting, depending on the prevalence of vaccine serotypes, largely related to conjugate vaccine coverage in children. Improved efficacy will increase public confidence and uptake of these vaccines. Co-administration of these vaccines is feasible and important for maximal uptake in older people. Development of new vaccine platforms has accelerated following the arrival of SARS-CoV-2, and will likely result in new vaccines against other pathogens in the future.


Subject(s)
Herpes Zoster Vaccine/immunology , Influenza Vaccines/immunology , Pneumococcal Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Age Factors , Aged , Aged, 80 and over , Animals , COVID-19 , Female , Humans , Immunosenescence/immunology , Male , Mice , Middle Aged , Randomized Controlled Trials as Topic , SARS-CoV-2
17.
Aging Cell ; 20(2): e13316, 2021 02.
Article in English | MEDLINE | ID: covidwho-1057943

ABSTRACT

The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.


Subject(s)
Cellular Senescence , Immunosenescence , Leukocytes/physiology , Animals , Biomarkers/metabolism , Humans , Oxidative Stress , Proteostasis
18.
Aging (Albany NY) ; 12(24): 26263-26278, 2020 12 27.
Article in English | MEDLINE | ID: covidwho-1000742

ABSTRACT

Inflammaging constitutes the common factor for comorbidities predisposing to severe COVID-19. Inflammaging leads to T-cell senescence, and immunosenescence is linked to autoimmune manifestations in COVID-19. As in SLE, metabolic dysregulation occurs in T-cells. Targeting this T-cell dysfunction opens the field for new therapeutic strategies to prevent severe COVID-19. Immunometabolism-mediated approaches such as rapamycin, metformin and dimethyl fumarate, may optimize COVID-19 treatment of the elderly and patients at risk for severe disease.


Subject(s)
Autoimmunity , COVID-19/immunology , COVID-19/metabolism , Energy Metabolism , Host-Pathogen Interactions , Immunosenescence , SARS-CoV-2/immunology , Biomarkers , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Enhancer Elements, Genetic , Humans , Promoter Regions, Genetic , SARS-CoV-2/genetics , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Front Immunol ; 11: 579220, 2020.
Article in English | MEDLINE | ID: covidwho-976255

ABSTRACT

Old individuals are more susceptible to various infections due to immunological changes that occur during the aging process. These changes named collectively as "immunosenescence" include decreases in both the innate and adaptive immune responses in addition to the exacerbated production of inflammatory cytokines. This scenario of immunological dysfunction and its relationship with disease development in older people has been widely studied, especially in infections that can be fatal, such as influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection, many mechanisms of disease pathogenesis in old individuals have been proposed. To better understand the dynamics of COVID-19 in this group, aspects related to immunological senescence must be well elucidated. In this article, we discuss the main mechanisms involved in immunosenescence and their possible correlations with the susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more severe conditions of the disease.


Subject(s)
Aging/immunology , COVID-19/immunology , Immunosenescence , SARS-CoV-2/physiology , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics , Risk Factors , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...