Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
Add filters

Document Type
Year range
1.
Int J Biol Sci ; 18(1): 386-408, 2022.
Article in English | MEDLINE | ID: covidwho-1607858

ABSTRACT

Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Immunotherapy/methods , SARS-CoV-2 , Animals , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19 Vaccines , Cytokines/metabolism , Female , Humans , Immune System , Immunity, Innate , Immunologic Memory , Male , Mice
3.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580694

ABSTRACT

Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.


Subject(s)
Lung Diseases/genetics , Lung Diseases/immunology , Telomere Shortening/immunology , Animals , COVID-19/genetics , COVID-19/immunology , Cellular Senescence/genetics , Genetic Therapy/methods , Humans , Immunotherapy/methods , Lung Diseases/drug therapy
4.
Lancet Oncol ; 23(1): 16-18, 2022 01.
Article in English | MEDLINE | ID: covidwho-1586208
5.
Expert Rev Mol Med ; 23: e24, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1586140

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and significantly impacts the world economy and daily life. Symptoms of COVID-19 range from asymptomatic to fever, dyspnoea, acute respiratory distress and multiple organ failure. Critical cases often occur in the elderly and patients with pre-existing conditions. By binding to the angiotensin-converting enzyme 2 receptor, SARS-CoV-2 can enter and replicate in the host cell, exerting a cytotoxic effect and causing local and systemic inflammation. Currently, there is no specific treatment for COVID-19, and immunotherapy has consistently attracted attention because of its essential role in boosting host immunity to the virus and reducing overwhelming inflammation. In this review, we summarise the immunopathogenic features of COVID-19 and highlight recent advances in immunotherapy to illuminate ideas for the development of new potential therapies.


Subject(s)
COVID-19 , Aged , Humans , Immunologic Factors , Immunotherapy , Pandemics , SARS-CoV-2
6.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572666

ABSTRACT

Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/genetics , Adenoviridae/physiology , COVID-19/prevention & control , Genetic Therapy , Animals , COVID-19 Vaccines , Cell Line, Tumor , Gene Expression , Genetic Vectors , Humans , Immunotherapy , Oncolytic Viruses/genetics , Pluripotent Stem Cells , Promoter Regions, Genetic , SARS-CoV-2 , Survivin , Virus Replication
7.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522

ABSTRACT

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Subject(s)
COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , /immunology
8.
Nat Rev Immunol ; 20(11): 648-649, 2020 11.
Article in English | MEDLINE | ID: covidwho-1550308
10.
EBioMedicine ; 72: 103610, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1514150

ABSTRACT

BACKGROUND: Recent studies have provided evidence of T cell reactivity to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in significant numbers of non-infected individuals, which has been attributed to cross-reactive CD4 memory T cells from previous exposure to seasonal coronaviruses. Less evidence of cross-reactive memory CD8 T cells has been documented to date. METHODS: We used the NetCTLPan neural network of the Epitope Database and Analysis Resource to select a series of 27 HLA-A*02:01 epitopes derived from the proteome of SARS-CoV-2. Their binding capacity was assessed by a HLA-A*02:01 stabilization assay and by quantifying their binding to HLA-A*02:01 monomers for the generation of tetramers. Their ability to stimulate and induce expansion of SARS-CoV-2 reactive CD8 T cells was measured by flow cytometry. The TCR repertoire of COVID convalescent and healthy unexposed donors was analysed using the MIRA database. FINDINGS: The HLA-A*02:01 epitopes tested were able to stabilise HLA molecules and induce activation of CD8 T cells of healthy unexposed donors. Our results, based on specific tetramer binding, provide evidence supporting the presence of frequent cross-reactive CD8 T cells to SARS-CoV-2 antigens in non-exposed individuals. Interestingly, the reactive cells were distributed into naïve, memory and effector subsets. INTERPRETATION: Our data are consistent with a significant proportion of the reactive CD8 T clones belonging to the public shared repertoire, readily available in absence of previous contact with closely related coronaviruses. Furthermore, we demonstrate the immunogenic capacity of long peptides carrying T cell epitopes, which can serve to isolate virus-specific T cell receptors among the ample repertoire of healthy unexposed subjects and could have application in COVID-19 immunotherapy. Limitations of our study are that it concentrated on one MHC I allele (HLA-A*02:01) and the low numbers of samples and epitopes tested. FUNDING: See the Acknowledgements section.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Computer Simulation , Cross Reactions , Humans , Immunotherapy , Receptors, Antigen, T-Cell
11.
RMD Open ; 7(3)2021 10.
Article in English | MEDLINE | ID: covidwho-1495559

ABSTRACT

OBJECTIVE: To update the EULAR 2020 systematic literature review (SLR) on efficacy and safety of immunomodulatory agents in SARS-CoV-2 infection. METHODS: As part of a EULAR taskforce, a systematic literature search update was conducted from 11 December 2020 to 14 July 2021. Two reviewers independently identified eligible studies and extracted data on efficacy and safety of immunomodulatory agents used therapeutically in SARS-CoV-2 infection at any stage of disease. The risk of bias (RoB) was assessed with validated tools. RESULTS: Of the 26 959 records, 520 articles were eligible for inclusion. Studies were mainly at high or unclear RoB. New randomised controlled trials (RCTs) on tocilizumab clarified its benefit in patients with severe and critical COVID-19, mainly if associated with glucocorticoids. There are emergent data on the usefulness of baricitinib and tofacitinib in severe COVID-19. Other therapeutic strategies such as the use of convalescent plasma and anti-SARS-CoV-2 monoclonal antibodies showed efficacy in subjects not mounting normal anti-SARS-CoV-2 antibody responses. CONCLUSION: This new SLR confirms that some immunomodulators (tocilizumab and JAK inhibitors) have a role for treating severe and critical COVID-19. Although better evidence is available compared with the previous SLR, the need of RCT with combination therapy (glucocorticoids+anti-cytokines) versus monotherapy with glucocorticoids still remains alongside the need for standardisation of inclusion criteria and outcomes to ultimately improve the care and prognosis of affected people. This SLR informed the 2021 update of the EULAR points to consider on the use of immunomodulatory therapies in COVID-19.


Subject(s)
COVID-19 , Immunotherapy , COVID-19/therapy , Humans , Immunization, Passive
12.
J Eur Acad Dermatol Venereol ; 35(5): e312-e314, 2021 May.
Article in English | MEDLINE | ID: covidwho-1494746
13.
Hum Vaccin Immunother ; 17(2): 330-331, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1487401
14.
J Neuroinflammation ; 18(1): 231, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1468067

ABSTRACT

It is well accepted that environmental stressors experienced over a one's life, from microbial infections to chemical toxicants to even psychological stressors, ultimately shape central nervous system (CNS) functioning but can also contribute to its eventual breakdown. The severity, timing and type of such environmental "hits", woven together with genetic factors, likely determine what CNS outcomes become apparent. This focused review assesses the current COVID-19 pandemic through the lens of a multi-hit framework and disuses how the SARS-COV-2 virus (causative agent) might impact the brain and potentially interact with other environmental insults. What the long-term consequences of SAR2 COV-2 upon neuronal processes is yet unclear, but emerging evidence is suggesting the possibility of microglial or other inflammatory factors as potentially contributing to neurodegenerative illnesses. Finally, it is critical to consider the impact of the virus in the context of the substantial psychosocial stress that has been associated with the global pandemic. Indeed, the loneliness, fear to the future and loss of social support alone has exerted a massive impact upon individuals, especially the vulnerable very young and the elderly. The substantial upswing in depression, anxiety and eating disorders is evidence of this and in the years to come, this might be matched by a similar spike in dementia, as well as motor and cognitive neurodegenerative diseases.


Subject(s)
COVID-19/immunology , Inflammation Mediators/immunology , Mental Disorders/immunology , Neurodegenerative Diseases/immunology , Neuroimmunomodulation/immunology , Animals , Brain/immunology , COVID-19/epidemiology , Humans , Immunotherapy/trends , Mental Disorders/epidemiology , Mental Disorders/therapy , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/therapy , Stress, Psychological/epidemiology , Stress, Psychological/immunology , Stress, Psychological/therapy
15.
Front Immunol ; 12: 652252, 2021.
Article in English | MEDLINE | ID: covidwho-1463468

ABSTRACT

The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.


Subject(s)
COVID-19/immunology , Cardiovascular System/virology , Coronavirus Infections/immunology , Coronavirus/physiology , Immunotherapy/methods , Lung/virology , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/immunology , Animals , Cardiovascular System/pathology , Humans , Immunity, Innate , Lung/pathology
16.
Int J Biol Sci ; 17(14): 3795-3817, 2021.
Article in English | MEDLINE | ID: covidwho-1459010

ABSTRACT

Background: SARS-CoV-2, the cause of the worldwide COVID-19 pandemic, utilizes the mechanism of binding to ACE2 (a crucial component of the renin-angiotensin system [RAS]), subsequently mediating a secondary imbalance of the RAS family and leading to severe injury to the host. However, very few studies have been conducted to reveal the mechanism behind the effect of SARS-CoV-2 on tumors. Methods: Demographic data extracted from 33 cancer types and over 10,000 samples were employed to determine the comprehensive landscape of the RAS. Expression distribution, pretranscriptional and posttranscriptional regulation and posttranslational modifications (PTMs) as well as genomic alterations, DNA methylation and m6A modification were analyzed in both tissue and cell lines. The clinical phenotype, prognostic value and significance of the RAS during immune infiltration were identified. Results: Low expression of AGTR1 was common in tumors compared to normal tissues, while very low expression of AGTR2 and MAS1 was detected in both tissues and cell lines. Differential expression patterns of ACE in ovarian serous cystadenocarcinoma (OV) and kidney renal clear cell carcinoma (KIRC) were correlated with ubiquitin modification involving E3 ligases. Genomic alterations of the RAS family were infrequent across TCGA pan-cancer program, and ACE had the highest alteration frequency compared with other members. Low expression of AGTR1 may result from hypermethylation in the promoter. Downregulation of RAS family was linked to higher clinical stage and worse survival (as measured by disease-specific survival [DSS], overall survival [OS] or progression-free interval [PFI]), especially for ACE2 and AGTR1 in KIRC. ACE-AGTR1, a classical axis of the RAS family related to immune infiltration, was positively correlated with M2-type macrophages, cancer-associated fibroblasts (CAFs) and immune checkpoint genes in most cancers. Conclusion: ACE, ACE2, AGT and AGTR1 were differentially expressed in 33 types of cancers. PTM of RAS family was found to rely on ubiquitination. ACE2 and AGTR1 might serve as independent prognostic factors for LGG and KIRC. SARS-CoV-2 might modify the tumor microenvironment by regulating the RAS family, thus affecting the biological processes of cancer.


Subject(s)
Neoplasms/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , COVID-19/complications , COVID-19/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Neoplasms/etiology , Neoplasms/mortality , Neoplasms/therapy , Protein Processing, Post-Translational
17.
Nat Immunol ; 22(10): 1203-1204, 2021 10.
Article in English | MEDLINE | ID: covidwho-1454794
18.
Rev Esp Quimioter ; 34 Suppl 1: 57-59, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1449586

ABSTRACT

The pharmacological treatment of COVID-19 has evolved in the months since the description of the disease. Published observational studies and, above all, clinical trials have highlighted drugs that are useful as well as ruled out any benefit from other drugs used at the beginning of the pandemic. The pathogenesis of the disease has suggested that patients may benefit from the administration of both antivirals, mainly in the earliest stages, and anti-inflammatory/immunomodulatory medications in more advanced stages. We present a short review of the drugs used and under investigation for the treatment of COVID-19.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Humans , Immunotherapy , Pandemics , SARS-CoV-2
19.
Front Immunol ; 12: 740249, 2021.
Article in English | MEDLINE | ID: covidwho-1448730

ABSTRACT

Objective: To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods: Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results: We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion: This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.


Subject(s)
Antibodies, Viral/immunology , Arthritis, Rheumatoid/therapy , COVID-19 Vaccines/immunology , Immunotherapy/adverse effects , T-Lymphocytes/immunology , Aged , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Female , Humans , Interferon-gamma/immunology , Lymphocyte Count , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , Vaccines, Synthetic/immunology
20.
Biomolecules ; 11(9)2021 09 17.
Article in English | MEDLINE | ID: covidwho-1430768

ABSTRACT

A growing body of evidence initially suggested that patients with multiple sclerosis (MS) might be more susceptible to coronavirus disease 2019 (COVID-19). Moreover, it was speculated that patients with MS treated with immunosuppressive drugs might be at risk to develop a severe diseases course after infection with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV2). However, the recently published data have shown that MS patients do not have a higher risk for severe COVID-19. Although there is no indication that patients with MS and immunomodulatory/immunosuppressive therapy are generally at a higher risk of severe COVID-19, it is currently being emphasized that the hazards of poorly treated MS may outweigh the putative COVID-19 dangers. In this review, we discuss the challenges and considerations for MS patients in the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Immunosuppressive Agents/therapeutic use , Immunotherapy , Multiple Sclerosis , Pandemics , SARS-CoV-2 , Humans , Immunosuppressive Agents/adverse effects , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...