Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Cells ; 11(7)2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1776139

ABSTRACT

The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment. The infection begins in the proximal airways, namely the alveolar type 2 (AT2) cells of the distal lung, which express both ACE2 and DPP4 receptors. Thus, to evaluate the efficacy of both approaches, we developed three-dimensional (3D) complex lung organoid structures (hLORGs) derived from human-induced pluripotent stem cells (iPSCs) and resembling the in vivo organ. Afterward, hLORGs were infected by different SARS-CoV-2 S pseudovirus variants and treated by the Ab15033-7 or DPP4 peptide. Using both approaches, we observed a significant reduction of viral entry and a modulation of the expression of genes implicated in innate immunity and inflammatory response. These data demonstrate the efficacy of such approaches in strongly reducing the infection efficiency in vitro and, importantly, provide proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , COVID-19/drug therapy , Dipeptidyl Peptidase 4/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lung/metabolism , Organoids/metabolism , SARS-CoV-2
2.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1712991

ABSTRACT

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Subject(s)
Blood-Brain Barrier/virology , Central Nervous System/virology , SARS-CoV-2/physiology , Virus Internalization , Antibodies/pharmacology , Benzamidines/pharmacology , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Guanidines/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Virus Internalization/drug effects
3.
J Virol ; 95(24): e0136821, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1691427

ABSTRACT

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Subject(s)
COVID-19/virology , Myocytes, Cardiac/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cathepsin B/metabolism , Cell Fusion , Chlorocebus aethiops , Embryonic Stem Cells/metabolism , Exocytosis , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism , Virus Internalization , Virus Replication
4.
Stem Cell Rev Rep ; 18(1): 142-154, 2022 01.
Article in English | MEDLINE | ID: covidwho-1676351

ABSTRACT

In 2006, the induced pluripotent stem cell (iPSC) was presented to the world, paving the way for the development of a magnitude of novel therapeutic alternatives, addressing a diverse range of diseases. However, despite the immense cell therapy potential, relatively few clinical trials evaluating iPSC-technology have actually translated into interventional, clinically applied treatment regimens. Herein, our aim was to determine trends in globally conducted clinical trials involving iPSCs. Data were derived both from well-known registries recording clinical trials from across the globe, and databases from individual countries. Comparisons were firstly drawn between observational and interventional studies before the latter was further analyzed in terms of therapeutic and nontherapeutic trials. Our main observations included global distribution, purpose, target size, and types of disorder relevant to evaluated trials. In terms of nontherapeutic trials, the USA conducted the majority, a large average number of participants-187-was included in the trials, and studies on circulatory system disorders comprised a slightly higher proportion of total studies. Conversely, Japan was the frontrunner in terms of conducting therapeutic trials, and the average number of participants was much lower, at roughly 29. Disorders of the circulatory, as well as nervous and visual systems, were all studied in equal measure. This review highlights the impact that iPSC-based cell therapies can have, should development thereof gain more traction. We lastly considered a few companies that are actively utilizing iPSCs in the development of therapies for various diseases, for whom the global trends in clinical trials could become increasingly important.


Subject(s)
Induced Pluripotent Stem Cells , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/metabolism , Japan
5.
Cytotherapy ; 24(3): 235-248, 2022 03.
Article in English | MEDLINE | ID: covidwho-1469878

ABSTRACT

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Organoids/metabolism , Prospective Studies , SARS-CoV-2
6.
J Virol ; 95(24): e0136821, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1455676

ABSTRACT

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Subject(s)
COVID-19/virology , Myocytes, Cardiac/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cathepsin B/metabolism , Cell Fusion , Chlorocebus aethiops , Embryonic Stem Cells/metabolism , Exocytosis , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism , Virus Internalization , Virus Replication
7.
Nat Commun ; 12(1): 652, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1397868

ABSTRACT

Injury and loss of oligodendrocytes can cause demyelinating diseases such as multiple sclerosis. To improve our understanding of human oligodendrocyte development, which could facilitate development of remyelination-based treatment strategies, here we describe time-course single-cell-transcriptomic analysis of developing human stem cell-derived oligodendrocyte-lineage-cells (hOLLCs). The study includes hOLLCs derived from both genome engineered embryonic stem cell (ESC) reporter cells containing an Identification-and-Purification tag driven by the endogenous PDGFRα promoter and from unmodified induced pluripotent (iPS) cells. Our analysis uncovers substantial transcriptional heterogeneity of PDGFRα-lineage hOLLCs. We discover sub-populations of human oligodendrocyte progenitor cells (hOPCs) including a potential cytokine-responsive hOPC subset, and identify candidate regulatory genes/networks that define the identity of these sub-populations. Pseudotime trajectory analysis defines developmental pathways of oligodendrocytes vs astrocytes from PDGFRα-expressing hOPCs and predicts differentially expressed genes between the two lineages. In addition, pathway enrichment analysis followed by pharmacological intervention of these pathways confirm that mTOR and cholesterol biosynthesis signaling pathways are involved in maturation of oligodendrocytes from hOPCs.


Subject(s)
Genetic Heterogeneity , Genetic Variation , Induced Pluripotent Stem Cells/metabolism , Oligodendrocyte Precursor Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Astrocytes/cytology , Astrocytes/metabolism , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Cholesterol/biosynthesis , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Oligodendrocyte Precursor Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: covidwho-1390542

ABSTRACT

The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes ß-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived ß-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing ß-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human ß-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.


Subject(s)
Homeostasis , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/enzymology , Insulin/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Genes, Reporter , Harmine/pharmacology , Homeostasis/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/drug effects , Kinetics , Male , Mice , Models, Biological , NFATC Transcription Factors/metabolism , Organoids/drug effects , Organoids/metabolism , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Rats , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
9.
J Toxicol Sci ; 46(9): 425-435, 2021.
Article in English | MEDLINE | ID: covidwho-1389030

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Bleomycin/toxicity , Cell Differentiation , Induced Pluripotent Stem Cells/drug effects , SARS-CoV-2/drug effects , Toxicity Tests , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/drug therapy , Cell Line , Cell Survival/drug effects , Host-Pathogen Interactions , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phenotype , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Virus Replication/drug effects
10.
Hepatology ; 74(4): 1825-1844, 2021 10.
Article in English | MEDLINE | ID: covidwho-1372726

ABSTRACT

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Subject(s)
End Stage Liver Disease/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organoids/metabolism , Adult , Aged , Biopsy , COVID-19/complications , COVID-19/virology , Cell Differentiation/immunology , End Stage Liver Disease/immunology , Female , Gene Expression Profiling , Healthy Volunteers , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/immunology , Liver Regeneration , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/virology , Organoids/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology
11.
PLoS One ; 16(8): e0255976, 2021.
Article in English | MEDLINE | ID: covidwho-1365424

ABSTRACT

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Arrhythmias, Cardiac , COVID-19 , Calcium Signaling/drug effects , Myocytes, Cardiac , SARS-CoV-2/metabolism , Adult , Aged , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , COVID-19/complications , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/pathology , Calcium/metabolism , Drug Evaluation, Preclinical , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
12.
Comput Biol Med ; 131: 104293, 2021 04.
Article in English | MEDLINE | ID: covidwho-1101164

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Up to 20%-30% of patients hospitalized with COVID-19 have evidence of cardiac dysfunction. Xuebijing injection is a compound injection containing five traditional Chinese medicine ingredients, which can protect cells from SARS-CoV-2-induced cell death and improve cardiac function. However, the specific protective mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction remains unclear. METHODS: The therapeutic effect of Xuebijing injection on COVID-19 was validated by the TCM Anti COVID-19 (TCMATCOV) platform. RNA-sequencing (RNA-seq) data from GSE150392 was used to find differentially expressed genes (DEGs) from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. Data from GSE151879 was used to verify the expression of Angiotensin I Converting Enzyme 2 (ACE2) and central hub genes in both human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) and adult human CMs with SARS-CoV-2 infection. RESULTS: A total of 97 proteins were identified as the therapeutic targets of Xuebijing injection for COVID-19. There were 22 DEGs in SARS-CoV-2 infected hiPSC-CMs overlapped with the 97 therapeutic targets, which might be the therapeutic targets of Xuebijing injection on COVID-19-induced cardiac dysfunction. Based on the bioinformatics analysis, 7 genes (CCL2, CXCL8, FOS, IFNB1, IL-1A, IL-1B, SERPINE1) were identified as central hub genes and enriched in pathways including cytokines, inflammation, cell senescence and oxidative stress. ACE2, the receptor of SARS-CoV-2, and the 7 central hub genes were differentially expressed in at least two kinds of SARS-CoV-2 infected CMs. Besides, FOS and quercetin exhibited the tightest binding by molecular docking analysis. CONCLUSION: Our study indicated the underlying protective effect of Xuebijing injection on COVID-19, especially on COVID19-induced cardiac dysfunction, which provided the theoretical basis for exploring the potential protective mechanism of Xuebijing injection on COVID19-induced cardiac dysfunction.


Subject(s)
COVID-19/metabolism , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Myocytes, Cardiac/metabolism , RNA-Seq , SARS-CoV-2/metabolism , COVID-19/drug therapy , Cell Line , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Human Embryonic Stem Cells/virology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
13.
Stem Cell Reports ; 16(3): 437-445, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1084274

ABSTRACT

COVID-19 is a transmissible respiratory disease caused by a novel coronavirus, SARS-CoV-2, and has become a global health emergency. There is an urgent need for robust and practical in vitro model systems to investigate viral pathogenesis. Here, we generated human induced pluripotent stem cell (iPSC)-derived lung organoids (LORGs), cerebral organoids (CORGs), neural progenitor cells (NPCs), neurons, and astrocytes. LORGs containing epithelial cells, alveolar types 1 and 2, highly express ACE2 and TMPRSS2 and are permissive to SARS-CoV-2 infection. SARS-CoV-2 infection induces interferons, cytokines, and chemokines and activates critical inflammasome pathway genes. Spike protein inhibitor, EK1 peptide, and TMPRSS2 inhibitors (camostat/nafamostat) block viral entry in LORGs. Conversely, CORGs, NPCs, astrocytes, and neurons express low levels of ACE2 and TMPRSS2 and correspondingly are not highly permissive to SARS-CoV-2 infection. Infection in neuronal cells activates TLR3/7, OAS2, complement system, and apoptotic genes. These findings will aid in understanding COVID-19 pathogenesis and facilitate drug discovery.


Subject(s)
Brain/virology , COVID-19/virology , Induced Pluripotent Stem Cells/virology , Lung/virology , Neural Stem Cells/virology , Organoids/virology , SARS-CoV-2/pathogenicity , Apoptosis/physiology , Brain/metabolism , COVID-19/metabolism , Cells, Cultured , Complement System Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/metabolism , Inflammation/virology , Lung/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Neurons/virology , Organoids/metabolism , Serine Endopeptidases/metabolism , Signal Transduction/physiology , Stem Cells/metabolism , Stem Cells/virology
14.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055070

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Gene Expression , Induced Pluripotent Stem Cells/cytology , Retina/cytology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cell Culture Techniques , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Organoids/cytology , Organoids/metabolism , Retina/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Virus Internalization
15.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-933377

ABSTRACT

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , SARS-CoV-2/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antiviral Agents , COVID-19/drug therapy , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Cytoskeleton , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phosphoproteins/genetics , Protein Transport , Proteome/genetics , SARS-CoV-2/genetics , Signal Transduction , Vero Cells
16.
FEBS J ; 288(12): 3715-3726, 2021 06.
Article in English | MEDLINE | ID: covidwho-923390

ABSTRACT

In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.


Subject(s)
Antiviral Agents/metabolism , Carbon/metabolism , Interferons/metabolism , Proteins/metabolism , S-Adenosylmethionine/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , HEK293 Cells , Humans , Immunity, Innate/drug effects , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Models, Biological , Oxidoreductases Acting on CH-CH Group Donors , Proteins/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
17.
Circ J ; 84(11): 2027-2031, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-795948

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with myocardial injury, but there is a paucity of experimental platforms for the condition.Methods and Results:Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected by SARS-CoV-2 for 3 days ceased beating and exhibited cytopathogenic changes with reduced viability. Active viral replication was evidenced by an increase in supernatant SARS-CoV-2 and the presence of SARS-CoV-2 nucleocaspid protein within hiPSC-CMs. Expressions of BNP, CXCL1, CXCL2, IL-6, IL-8 and TNF-α were upregulated, while ACE2 was downregulated. CONCLUSIONS: Our hiPSC-CM-based in-vitro SARS-CoV-2 myocarditis model recapitulated the cytopathogenic effects and cytokine/chemokine response. It could be exploited as a drug screening platform.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/complications , Induced Pluripotent Stem Cells/virology , Myocarditis/complications , Myocytes, Cardiac/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Cell Survival , Cells, Cultured , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cytokines/metabolism , Cytopathogenic Effect, Viral , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Myocarditis/metabolism , Myocarditis/virology , Myocytes, Cardiac/metabolism , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Virus Replication
18.
Hum Genomics ; 14(1): 25, 2020 06 26.
Article in English | MEDLINE | ID: covidwho-617410

ABSTRACT

Human-induced pluripotent stem cells (hiPSCs) and CRISPR/Cas9 gene editing system represent two instruments of basic and translational research, which both allow to acquire deep insight about the molecular bases of many diseases but also to develop pharmacological research.This review is focused to draw up the latest technique of gene editing applied on hiPSCs, exploiting some of the genetic manipulation directed to the discovery of innovative therapeutic strategies. There are many expediencies provided by the use of hiPSCs, which can represent a disease model clinically relevant and predictive, with a great potential if associated to CRISPR/Cas9 technology, a gene editing tool powered by ease and precision never seen before.Here, we describe the possible applications of CRISPR/Cas9 to hiPSCs: from drug development to drug screening and from gene therapy to the induction of the immunological response to specific virus infection, such as HIV and SARS-Cov-2.


Subject(s)
CRISPR-Cas Systems , Drug Discovery , Gene Editing , Genetic Therapy , Induced Pluripotent Stem Cells/cytology , Virus Diseases/therapy , Animals , Cellular Reprogramming , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Virus Diseases/genetics
19.
Cell Stem Cell ; 27(1): 125-136.e7, 2020 07 02.
Article in English | MEDLINE | ID: covidwho-610467

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. There is an urgent need for physiological models to study SARS-CoV-2 infection using human disease-relevant cells. COVID-19 pathophysiology includes respiratory failure but involves other organ systems including gut, liver, heart, and pancreas. We present an experimental platform comprised of cell and organoid derivatives from human pluripotent stem cells (hPSCs). A Spike-enabled pseudo-entry virus infects pancreatic endocrine cells, liver organoids, cardiomyocytes, and dopaminergic neurons. Recent clinical studies show a strong association with COVID-19 and diabetes. We find that human pancreatic beta cells and liver organoids are highly permissive to SARS-CoV-2 infection, further validated using adult primary human islets and adult hepatocyte and cholangiocyte organoids. SARS-CoV-2 infection caused striking expression of chemokines, as also seen in primary human COVID-19 pulmonary autopsy samples. hPSC-derived cells/organoids provide valuable models for understanding the cellular responses of human tissues to SARS-CoV-2 infection and for disease modeling of COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Organoids/virology , Pneumonia, Viral/virology , Tropism , Angiotensin-Converting Enzyme 2 , Animals , Autopsy , COVID-19 , Cell Line , Coronavirus Infections/pathology , Hepatocytes/pathology , Hepatocytes/virology , Humans , Induced Pluripotent Stem Cells/virology , Liver/pathology , Mice , Pancreas/pathology , Pancreas/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL