Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Antimicrob Resist Infect Control ; 11(1): 30, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1677540

ABSTRACT

BACKGROUND: Protecting healthcare workers (HCWs) from exposure to SARS-CoV-2 during patient care is central to managing the current pandemic. Higher levels of trust in personal protective equipment (PPE) and infection prevention and control (IPC) strategies have been previously related to lower levels of emotional exhaustion, yet little is known on how to achieve such a perception of safety. We thus sought to identify institutional actions, strategies and policies related to HCWs' safety perception during the early phase of the pandemic at a tertiary care center in Switzerland by interviewing HCWs from different clinics, professions, and positions. METHODS: For this qualitative study, 36 face-to-face semi-structured interviews were performed. Interviews were based on a guide that addressed the perception of institutional strategies and policies during the first phase of the pandemic in March 2020. The participants included doctors (n = 19) and nurses (n = 17) in senior and non-senior positions from eight clinics in the University Hospital Basel, Switzerland, all involved in patient care. All interviews were audio-recorded and transcribed verbatim. Data were analyzed using qualitative content analysis and organized using MAXQDA (VERBI Software GmbH, Berlin). FINDINGS: Five recurring themes were identified to affect HCWs' perception of their safety during the SARS-CoV-2 pandemic: (1) transparency and clarity of information, (2) communication on the availability of PPE (with the provision of information alone increasing the feeling of safety even if supplies of PPE were reported as low), (3) uniformity and consistency of guidelines, (4) digital resources to support face-to-face teaching (although personal information transfer is still being considered superior in terms of strengthening safety perception) and (5) support and appreciation for the work performed. CONCLUSIONS: This study identifies institutional policies and actions influencing HCWs' safety perception during the first wave of the COVID-19 pandemic, the most important of which is the factor of transparent communication. This knowledge reveals potential areas of action critical to improving preparedness and management in hospitals faced with an infectious disease threat.


Subject(s)
COVID-19/prevention & control , Health Personnel , Pandemics , Personal Protective Equipment , Tertiary Care Centers , COVID-19/epidemiology , Humans , Infection Control/statistics & numerical data , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Patient Care , Personal Protective Equipment/standards , Qualitative Research , SARS-CoV-2 , Switzerland/epidemiology
2.
PLoS One ; 17(2): e0245182, 2022.
Article in English | MEDLINE | ID: covidwho-1674002

ABSTRACT

BACKGROUND: Working under pandemic conditions exposes health care workers (HCWs) to infection risk and psychological strain. A better understanding of HCWs' experiences of following local infection prevention and control (IPC) procedures during COVID-19 is urgently needed to inform strategies for protecting the psychical and psychological health of HCWs. The objective of this study was therefore to capture the perceptions of hospital HCWs on local IPC procedures and the impact on their emotional wellbeing during the first wave of the COVID-19 pandemic in Europe. METHODS: Participants were recruited in two sampling rounds of an international cross-sectional survey. Sampling took place between 31 March and 17 April 2020 via existing research networks and between 14 May and 31 August 2020 via online convenience sampling. Main outcome measures were behavioural determinants of HCWs' adherence to IPC guidelines and the WHO-5 Well-Being Index, a validated scale of 0-100 reflecting emotional wellbeing. The WHO-5 was interpreted as a score below or above 50 points, a cut-off score used in previous literature to screen for depression. RESULTS: 2289 HCWs from 40 countries in Europe participated. Mean age was 42 (±11) years, 66% were female, 47% and 39% were medical doctors and nurses, respectively. 74% (n = 1699) of HCWs were directly treating patients with COVID-19, of which 32% (n = 527) reported they were fearful of caring for these patients. HCWs reported high levels of concern about COVID-19 infection risk to themselves (71%) and their family (82%) as a result of their job. 40% of HCWs considered that getting infected with COVID-19 was not within their control. This feeling was more common among junior than senior HCWs (46% versus 38%, P value < .01). Sufficient COVID-19-specific IPC training, confidence in PPE use and institutional trust were positively associated with the feeling that becoming infected with COVID-19 was within their control. Female HCWs were more likely than males to report a WHO-5 score below 50 points (aOR 1.5 (95% confidence interval (CI) 1.2-1.8). CONCLUSIONS: In Europe, the COVID-19 pandemic has had a differential impact on those providing direct COVID-19 patient care, junior staff and women. Health facilities must be aware of these differential impacts, build trust and provide tailored support for this vital workforce during the current COVID-19 pandemic.


Subject(s)
COVID-19/prevention & control , Guidelines as Topic/standards , Health Personnel/psychology , Hospitals/standards , Infection Control/statistics & numerical data , Personal Protective Equipment/statistics & numerical data , SARS-CoV-2/isolation & purification , Adult , COVID-19/epidemiology , COVID-19/psychology , COVID-19/virology , Cross-Sectional Studies , Europe/epidemiology , Female , Humans , Male , Patient Care/methods , Patient Care/standards
3.
CMAJ Open ; 9(4): E1232-E1241, 2021.
Article in English | MEDLINE | ID: covidwho-1591622

ABSTRACT

BACKGROUND: Limited space and resources are potential obstacles to infection prevention and control (IPAC) measures in in-centre hemodialysis units. We aimed to assess IPAC measures implemented in Quebec's hemodialysis units during the spring of 2020, describe the characteristics of these units and document the cumulative infection rates during the first year of the COVID-19 pandemic. METHODS: For this cross-sectional survey, we invited leaders from 54 hemodialysis units in Quebec to report information on the physical characteristics of the unit and their perceptions of crowdedness, which IPAC measures were implemented from Mar. 1 to June 30, 2020, and adherence to and feasibility of appropriate IPAC measures. Participating units were contacted again in March 2021 to collect information on the number of COVID-19 cases in order to derive the cumulative infection rate of each unit. RESULTS: Data were obtained from 38 of the 54 units contacted (70% response rate), which provided care to 4485 patients at the time of survey completion. Fourteen units (37%) had implemented appropriate IPAC measures by 3 weeks after Mar. 1, and all 38 units had implemented them by 6 weeks after. One-third of units were perceived as crowded. General measures, masks and screening questionnaires were used in more than 80% of units, and various distancing measures in 55%-71%; reduction in dialysis frequency was rare. Data on cumulative infection rates were obtained from 27 units providing care to 4227 patients. The cumulative infection rate varied from 0% to 50% (median 11.3%, interquartile range 5.2%-20.2%) and was higher than the reported cumulative infection rate in the corresponding region in 23 (85%) of the 27 units. INTERPRETATION: Rates of COVID-19 infection among hemodialysis recipients in Quebec were elevated compared to the general population during the first year of the pandemic, and although hemodialysis units throughout the province implemented appropriate IPAC measures rapidly in the spring of 2020, many units were crowded and could not maintain physical distancing. Future hemodialysis units should be designed to minimize airborne and droplet transmission of infection.


Subject(s)
COVID-19/prevention & control , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Infection Control , Renal Dialysis , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Infection Control/methods , Infection Control/statistics & numerical data , Quebec/epidemiology , Renal Dialysis/adverse effects , Renal Dialysis/methods , Surveys and Questionnaires
4.
CMAJ Open ; 9(4): E1175-E1180, 2021.
Article in English | MEDLINE | ID: covidwho-1575909

ABSTRACT

BACKGROUND: Reliable reports on hand hygiene performance throughout the COVID-19 pandemic are lacking as most hospitals continue to rely on direct observation to measure this quality indicator. Using group electronic hand hygiene monitoring, we sought to assess the impact of COVID-19 on adherence to hand hygiene. METHODS: Across 12 Ontario hospitals (5 university and 7 community teaching hospitals), a group electronic hand hygiene monitoring system was installed before the pandemic to provide continuous measurement of hand hygiene adherence across 978 ward and 367 critical care beds. We performed an interrupted time-series study of institutional hand hygiene adherence in association with a COVID-19 inpatient census and the Ontario daily count of COVID-19 cases during a baseline period (Nov. 1, 2019, to Feb. 29, 2020), the pre-peak period of the first wave of the pandemic (Mar. 1 to Apr. 24, 2020), and the post-peak period of the first wave (Apr. 25 to July 5, 2020). We used a Poisson regression model to assess the association between the hospital COVID-19 census and institutional hand hygiene adherence while adjusting for the correlation within inpatient units. RESULTS: At baseline, the rate of hand hygiene adherence was 46.0% (6 325 401 of 13 750 968 opportunities) and this improved beginning in March 2020 to a daily peak of 79.3% (66 640 of 84 026 opportunities) on Mar. 30, 2020. Each patient admitted with COVID-19 was associated with improved hand hygiene adherence (incidence rate ratio [IRR] 1.0621, 95% confidence interval [CI] 1.0619-1.0623). Increasing Ontario daily case count was similarly associated with improved hand hygiene (IRR 1.0026, 95% CI 1.0021-1.0032). After peak COVID-19 community and inpatient numbers, hand hygiene adherence declined and returned to baseline. INTERPRETATION: The first wave of the COVID-19 pandemic was associated with significant improvement in hand hygiene adherence, measured using a group electronic monitoring system. Future research should seek to determine whether strategies that focus on health care worker perception of personal risk can achieve sustainable improvements in hand hygiene performance.


Subject(s)
COVID-19/epidemiology , Hand Hygiene , Health Personnel , Hospitals , Infection Control/statistics & numerical data , COVID-19/virology , Hand Hygiene/methods , Health Impact Assessment , Humans , Infection Control/methods , Public Health Surveillance
5.
Nat Med ; 27(11): 2032-2040, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526097

ABSTRACT

The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Cohort Studies , Female , Humans , Immunization, Secondary , Infection Control/statistics & numerical data , Male , Middle Aged , Patient Acuity , SARS-CoV-2/genetics , Treatment Outcome , United Kingdom/epidemiology , Vaccination , Young Adult
6.
Medicine (Baltimore) ; 100(28): e26634, 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1494087

ABSTRACT

ABSTRACT: Emergency departments (EDs) are on the frontline of the coronavirus disease (COVID-19) outbreak. To resolve the abrupt overloading of COVID-19-suspected patients in a community, each ED needs to respond in various ways. In our hospital, we increased the isolation beds through temporary remodeling and by performing in-hospital COVID-19 polymerase chain reaction testing rather than outsourcing them. The aim of this study was to verify the effects of our response to the newly developed viral outbreak.The medical records of patients who presented to an ED were analyzed retrospectively. We divided the study period into 3: pre-COVID-19, transition period of response (the period before fully implementing the response measures), and post-response (the period after complete response). We compared the parameters of the National Emergency Department Information System and information about isolation and COVID-19.The number of daily ED patients was 86.8 ±â€Š15.4 in the pre-COVID-19, 36.3 ±â€Š13.6 in the transition period, and 67.2 ±â€Š10.0 in the post-response period (P < .001). The lengths of stay in the ED were significantly higher in transition period than in the other periods [pre-COVID-19 period, 219.0 (121.0-378.0) min; transition period, 301 (150.0-766.5) min; post-response period, 281.0 (114.0-575.0) min; P < .001]. The ratios of use of an isolation room and fever (≥37.5°C) were highest in the post-response period [use of isolation room: pre-COVID-19 period, 0.6 (0.7%); transition period, 1.2 (3.3%); post-response period, 16.1 (24.0%); P < .001; fever: pre-COVID-19 period, 14.8(17.3%); transition period, 6.8 (19.1%); post-response period, 14.5 (21.9%), P < .001].During an outbreak of a novel infectious disease, increasing the number of isolation rooms in the ED and applying a rapid confirmation test would enable the accommodation of more suspected patients, which could help reduce the risk posed to the community and thus prevent strain on the local emergency medical system.


Subject(s)
COVID-19 , Disease Outbreaks/statistics & numerical data , Emergency Medical Services/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Infection Control/statistics & numerical data , Adult , Aged , Continuity of Patient Care/statistics & numerical data , Female , Humans , Male , Middle Aged , Patient Isolation/statistics & numerical data , Republic of Korea , Retrospective Studies , SARS-CoV-2
7.
Antimicrob Resist Infect Control ; 10(1): 150, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1484322

ABSTRACT

BACKGROUND: Healthcare-associated infections (HCAIs) present a major public health problem that significantly affects patients, health care providers and the entire healthcare system. Infection prevention and control programs limit HCAIs and are an indispensable component of patient and healthcare worker safety. The clinical best practices (CBPs) of handwashing, screening, hygiene and sanitation of surfaces and equipment, and basic and additional precautions (e.g., isolation, and donning and removing personal protective equipment) are keystones of infection prevention and control (IPC). There is a lack of rigorous IPC economic evaluations demonstrating the cost-benefit of IPC programs in general, and a lack of assessment of the value of investing in CBPs more specifically. OBJECTIVE: This study aims to assess overall costs associated with each of the four CBPs. METHODS: Across two Quebec hospitals, 48 healthcare workers were observed for two hours each shift, for two consecutive weeks. A modified time-driven activity-based costing framework method was used to capture all human resources (time) and materials (e.g. masks, cloths, disinfectants) required for each clinical best practice. Using a hospital perspective with a time horizon of one year, median costs per CBP per hour, as well as the cost per action, were calculated and reported in 2018 Canadian dollars ($). Sensitivity analyses were performed. RESULTS: A total of 1831 actions were recorded. The median cost of hand hygiene (N = 867) was 20 cents per action. For cleaning and disinfection of surfaces (N = 102), the cost was 21 cents per action, while cleaning of small equipment (N = 85) was 25 cents per action. Additional precautions median cost was $4.1 per action. The donning or removing or personal protective equipment (N = 720) cost was 76 cents per action. Finally, the total median costs for the five categories of clinical best practiced assessed were 27 cents per action. CONCLUSIONS: The costs of clinical best practices were low, from 20 cents to $4.1 per action. This study provides evidence based arguments with which to support the allocation of resources to infection prevention and control practices that directly affect the safety of patients, healthcare workers and the public. Further research of costing clinical best care practices is warranted.


Subject(s)
Cross Infection/prevention & control , Disinfection/economics , Hand Hygiene/economics , Hygiene/economics , Infection Control/economics , Adult , Canada , Female , Humans , Infection Control/statistics & numerical data , Male , Masks , Middle Aged , Practice Guidelines as Topic , Prospective Studies
8.
Biomed Res Int ; 2021: 7787624, 2021.
Article in English | MEDLINE | ID: covidwho-1476885

ABSTRACT

The ascendancy of coronavirus has become widespread all around the world. For the prevention of viral transmission, the pattern of disease is explored. Epidemiological modeling is a vital component of the research. These models assist in studying various aspects of infectious diseases, such as death, recovery, and infection rates. Coronavirus trends across several countries may analyze sufficiently using SIR, SEIR, and SIQR models. Across this study, we propose two modified versions of the SEIRD method for evaluating the transmission of this infectious disease in the South Asian countries, more precisely, in the south Asian subcontinent. The SEIRD model is updated further by fusing some new factors, namely, isolation for the suspected people and recovery and death of the people who are not under the coverage of healthcare schemes or reluctant to receive treatment for various catastrophes. We will investigate the influences of those ingredients on public health-related issues. Finally, we will predict and display the infection scenario and relevant elements with the concluding remarks through the statistical analysis.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Asia/epidemiology , Bangladesh/epidemiology , Developing Countries , Humans , Infection Control/statistics & numerical data , Physical Distancing , Public Health/statistics & numerical data
9.
PLoS One ; 16(6): e0252803, 2021.
Article in English | MEDLINE | ID: covidwho-1453123

ABSTRACT

A variety of infectious diseases occur in mainland China every year. Cyclic oscillation is a widespread attribute of most viral human infections. Understanding the outbreak cycle of infectious diseases can be conducive for public health management and disease surveillance. In this study, we collected time-series data for 23 class B notifiable infectious diseases from 2004 to 2020 using public datasets from the National Health Commission of China. Oscillatory properties were explored using power spectrum analysis. We found that the 23 class B diseases from the dataset have obvious oscillatory patterns (seasonal or sporadic), which could be divided into three categories according to their oscillatory power in different frequencies each year. These diseases were found to have different preferred outbreak months and infection selectivity. Diseases that break out in autumn and winter are more selective. Furthermore, we calculated the oscillation power and the average number of infected cases of all 23 diseases in the first eight years (2004 to 2012) and the next eight years (2012 to 2020) since the update of the surveillance system. A strong positive correlation was found between the change of oscillation power and the change in the number of infected cases, which was consistent with the simulation results using a conceptual hybrid model. The establishment of reliable and effective analytical methods contributes to a better understanding of infectious diseases' oscillation cycle characteristics. Our research has certain guiding significance for the effective prevention and control of class B infectious diseases.


Subject(s)
Algorithms , Communicable Diseases/epidemiology , Disease Outbreaks , Models, Theoretical , Seasons , China/epidemiology , Communicable Diseases/classification , Communicable Diseases/diagnosis , Humans , Incidence , Infection Control/methods , Infection Control/statistics & numerical data , Population Surveillance/methods , Public Health/methods , Public Health/statistics & numerical data
10.
Nat Med ; 27(11): 2032-2040, 2021 11.
Article in English | MEDLINE | ID: covidwho-1442795

ABSTRACT

The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Cohort Studies , Female , Humans , Immunization, Secondary , Infection Control/statistics & numerical data , Male , Middle Aged , Patient Acuity , SARS-CoV-2/genetics , Treatment Outcome , United Kingdom/epidemiology , Vaccination , Young Adult
11.
PLoS One ; 16(8): e0255680, 2021.
Article in English | MEDLINE | ID: covidwho-1341508

ABSTRACT

New emerging infectious diseases are identified every year, a subset of which become global pandemics like COVID-19. In the case of COVID-19, many governments have responded to the ongoing pandemic by imposing social policies that restrict contacts outside of the home, resulting in a large fraction of the workforce either working from home or not working. To ensure essential services, however, a substantial number of workers are not subject to these limitations, and maintain many of their pre-intervention contacts. To explore how contacts among such "essential" workers, and between essential workers and the rest of the population, impact disease risk and the effectiveness of pandemic control, we evaluated several mathematical models of essential worker contacts within a standard epidemiology framework. The models were designed to correspond to key characteristics of cashiers, factory employees, and healthcare workers. We find in all three models that essential workers are at substantially elevated risk of infection compared to the rest of the population, as has been documented, and that increasing the numbers of essential workers necessitates the imposition of more stringent controls on contacts among the rest of the population to manage the pandemic. Importantly, however, different archetypes of essential workers differ in both their individual probability of infection and impact on the broader pandemic dynamics, highlighting the need to understand and target intervention for the specific risks faced by different groups of essential workers. These findings, especially in light of the massive human costs of the current COVID-19 pandemic, indicate that contingency plans for future epidemics should account for the impacts of essential workers on disease spread.


Subject(s)
COVID-19/transmission , Infection Control , Physical Distancing , Workforce , COVID-19/epidemiology , Epidemics/prevention & control , Health Personnel/statistics & numerical data , Humans , Infection Control/methods , Infection Control/standards , Infection Control/statistics & numerical data , Models, Statistical , New York City/epidemiology , Occupations/statistics & numerical data , Pandemics , Quarantine/statistics & numerical data , Risk Factors , Vulnerable Populations/statistics & numerical data , Workforce/organization & administration , Workforce/statistics & numerical data
12.
Am J Emerg Med ; 49: 172-177, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1260367

ABSTRACT

BACKGROUND: Airborne personal protective equipment is required for healthcare workers when performing aerosol-generating procedures on patients with infectious diseases. Chest compressions, one of the main components of cardiopulmonary resuscitation, require intense and dynamic movements of the upper body. We aimed to investigate the protective effect of tight-fitting powered air-purifying respirators (PAPRs) during chest compressions. METHODS: This single-center simulation study was performed from February 2021 to March 2021. The simulated workplace protection factor (SWPF) is the concentration ratio of ambient particles and particles inside the PAPR mask; this value indicates the level of protection provided by a respirator when subjected to a simulated work environment. Participants performed continuous chest compressions three times for 2 min each time, with a 4-min break between each session. We measured the SWPF of the tight-fitting PAPR during chest compression in real-time mode. The primary outcome was the ratio of any failure of protection (SWPF <500) during the chest compression sessions. RESULTS: Fifty-four participants completed the simulation. Overall, 78% (n = 42) of the participants failed (the measured SWPF value was less than 500) at least one of the three sessions of chest compressions. The median value and interquartile range of the SWPF was 4304 (685-16,191). There were no reports of slipping down of the respirator or mechanical failure during chest compressions. CONCLUSIONS: Although the median SWPF value was high during chest compressions, the tight-fitting PAPR did not provide adequate protection.


Subject(s)
Cardiopulmonary Resuscitation/adverse effects , Protective Factors , Respiratory Protective Devices/standards , Adult , Air Filters/standards , Air Filters/statistics & numerical data , Cardiopulmonary Resuscitation/methods , Female , Humans , Infection Control/methods , Infection Control/standards , Infection Control/statistics & numerical data , Male , Respiratory Protective Devices/statistics & numerical data , Surveys and Questionnaires
13.
J Breath Res ; 15(4)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1320288

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has imposed a considerable burden on hospitals and healthcare workers (HCWs) worldwide, increasing the risk of outbreaks and nosocomial transmission to 'non-COVID-19' patients, who represent the highest-risk population in terms of mortality, and HCWs. Since HCWs are at the interface between hospitals on the one hand and the community on the other, they are potential reservoirs, carriers, or victims of severe acute respiratory syndrome coronavirus 2 cross-transmission. In addition, there has been a paradigm shift in the management of viral respiratory outbreaks, such as the widespread testing of patients and HCWs, including asymptomatic individuals. In hospitals, there is a risk of aerosol transmission in poorly ventilated spaces, and when performing aerosol-producing procedures, it is imperative to take measures against aerosol transmission. In particular, spatial separation of the inpatient ward for non-COVID-19 patients from that designated for patients with suspected or confirmed COVID-19 as well as negative-pressure isolation on the floor of the ward, using an airborne infection isolation device could help prevent nosocomial infection.


Subject(s)
COVID-19/prevention & control , Cross Infection/prevention & control , Health Personnel/statistics & numerical data , Hospitals , Infection Control , Physical Distancing , Ventilation , Aerosols , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/transmission , Humans , Infection Control/methods , Infection Control/statistics & numerical data , SARS-CoV-2 , Ventilation/methods , Ventilation/statistics & numerical data
14.
PLoS One ; 16(7): e0254920, 2021.
Article in English | MEDLINE | ID: covidwho-1315894

ABSTRACT

BACKGROUND: We evaluated measures to protect healthcare workers (HCWs) in Vancouver, Canada, where variants of concern (VOC) went from <1% VOC in February 2021 to >92% in mid-May. Canada has amongst the longest periods between vaccine doses worldwide, despite Vancouver having the highest P.1 variant rate outside Brazil. METHODS: With surveillance data since the pandemic began, we tracked laboratory-confirmed SARS-CoV-2 infections, positivity rates, and vaccine uptake in all 25,558 HCWs in Vancouver Coastal Health, by occupation and subsector, and compared to the general population. Cox regression modelling adjusted for age and calendar-time calculated vaccine effectiveness (VE) against SARS-CoV-2 in fully vaccinated (≥ 7 days post-second dose), partially vaccinated infection (after 14 days) and unvaccinated HCWs; we also compared with unvaccinated community members of the same age-range. FINDINGS: Only 3.3% of our HCWs became infected, mirroring community rates, with peak positivity of 9.1%, compared to 11.8% in the community. As vaccine coverage increased, SARS-CoV-2 infections declined significantly in HCWs, despite a surge with predominantly VOC; unvaccinated HCWs had an infection rate of 1.3/10,000 person-days compared to 0.89 for HCWs post first dose, and 0.30 for fully vaccinated HCWs. VE compared to unvaccinated HCWs was 37.2% (95% CI: 16.6-52.7%) 14 days post-first dose, 79.2% (CI: 64.6-87.8%) 7 days post-second dose; one dose provided significant protection against infection until at least day 42. Compared with community infection rates, VE after one dose was 54.7% (CI: 44.8-62.9%); and 84.8% (CI: 75.2-90.7%) when fully vaccinated. INTERPRETATION: Rigorous droplet-contact precautions with N95s for aerosol-generating procedures are effective in preventing occupational infection in HCWs, with one dose of mRNA vaccination further reducing infection risk despite VOC and transmissibility concerns. Delaying second doses to allow more widespread vaccination against severe disease, with strict public health, occupational health and infection control measures, has been effective in protecting the healthcare workforce.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Health Personnel/statistics & numerical data , Infection Control/statistics & numerical data , Occupational Health/statistics & numerical data , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Canada , Humans , Polymorphism, Genetic
15.
Ann R Coll Surg Engl ; 103(7): 478-480, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1288679

ABSTRACT

BACKGROUND: There is limited evidence on perioperative outcomes of surgical patients during the COVID-19 pandemic to inform continued operating into the winter period. METHODS: We retrospectively analysed the rate of 30-day COVID-19 transmission and mortality of all surgical patients in the three hospitals in our trust in the East of England during the first lockdown in March 2020. All patients who underwent a swab were swabbed on or 24 hours prior to admission. RESULTS: There were 4,254 patients and an overall 30-day mortality of 0.99%. The excess surgical mortality in our region was 0.29%. There were 39 patients who were COVID-19 positive within 30 days of admission, 12 of whom died. All 12 were emergency admissions with a length of stay longer than 24 hours. There were three deaths among those who underwent day case surgery, one of whom was COVID-19 negative, and the other two were not swabbed but not suspected to have COVID-19. There were two COVID-19 positive elective cases and none in day case elective or emergency surgery. There were no COVID-19 positive deaths in elective or day case surgery. CONCLUSIONS: There was a low rate of COVID-19 transmission and mortality in elective and day case operations. Our data have allowed us to guide patients in the consent process and provided the evidence base to restart elective and day case operating with precautions and regular review. A number of regions will be similarly affected and should perform a review of their data for the winter period and beyond.


Subject(s)
Ambulatory Surgical Procedures/mortality , COVID-19/epidemiology , Elective Surgical Procedures/mortality , Emergency Treatment/mortality , Ambulatory Surgical Procedures/standards , Ambulatory Surgical Procedures/statistics & numerical data , COVID-19/complications , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , Elective Surgical Procedures/standards , Elective Surgical Procedures/statistics & numerical data , Emergency Service, Hospital/standards , Emergency Service, Hospital/statistics & numerical data , Emergency Treatment/standards , Emergency Treatment/statistics & numerical data , England/epidemiology , Female , Hospital Mortality , Humans , Incidence , Infection Control/standards , Infection Control/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Pandemics/prevention & control , Pandemics/statistics & numerical data , Patient Admission/standards , Patient Admission/statistics & numerical data , Retrospective Studies , SARS-CoV-2/isolation & purification , State Medicine/standards , State Medicine/statistics & numerical data
16.
JAMA Netw Open ; 4(6): e2116425, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1281193

ABSTRACT

Importance: The COVID-19 pandemic has severely disrupted US educational institutions. Given potential adverse financial and psychosocial effects of campus closures, many institutions developed strategies to reopen campuses in the fall 2020 semester despite the ongoing threat of COVID-19. However, many institutions opted to have limited campus reopening to minimize potential risk of spread of SARS-CoV-2. Objective: To analyze how Boston University (BU) fully reopened its campus in the fall of 2020 and controlled COVID-19 transmission despite worsening transmission in Boston, Massachusetts. Design, Setting, and Participants: This multifaceted intervention case series was conducted at a large urban university campus in Boston, Massachusetts, during the fall 2020 semester. The BU response included a high-throughput SARS-CoV-2 polymerase chain reaction testing facility with capacity to deliver results in less than 24 hours; routine asymptomatic screening for COVID-19; daily health attestations; adherence monitoring and feedback; robust contact tracing, quarantine, and isolation in on-campus facilities; face mask use; enhanced hand hygiene; social distancing recommendations; dedensification of classrooms and public places; and enhancement of all building air systems. Data were analyzed from December 20, 2020, to January 31, 2021. Main Outcomes and Measures: SARS-CoV-2 diagnosis confirmed by reverse transcription-polymerase chain reaction of anterior nares specimens and sources of transmission, as determined through contact tracing. Results: Between August and December 2020, BU conducted more than 500 000 COVID-19 tests and identified 719 individuals with COVID-19, including 496 students (69.0%), 11 faculty (1.5%), and 212 staff (29.5%). Overall, 718 individuals, or 1.8% of the BU community, had test results positive for SARS-CoV-2. Of 837 close contacts traced, 86 individuals (10.3%) had test results positive for COVID-19. BU contact tracers identified a source of transmission for 370 individuals (51.5%), with 206 individuals (55.7%) identifying a non-BU source. Among 5 faculty and 84 staff with SARS-CoV-2 with a known source of infection, most reported a transmission source outside of BU (all 5 faculty members [100%] and 67 staff members [79.8%]). A BU source was identified by 108 of 183 undergraduate students with SARS-CoV-2 (59.0%) and 39 of 98 graduate students with SARS-CoV-2 (39.8%); notably, no transmission was traced to a classroom setting. Conclusions and Relevance: In this case series of COVID-19 transmission, BU used a coordinated strategy of testing, contact tracing, isolation, and quarantine, with robust management and oversight, to control COVID-19 transmission in an urban university setting.


Subject(s)
COVID-19/prevention & control , Infection Control/standards , Universities/trends , Urban Population/statistics & numerical data , Boston/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Contact Tracing/instrumentation , Contact Tracing/methods , Hand Hygiene/methods , Humans , Infection Control/methods , Infection Control/statistics & numerical data , Quarantine/methods , Universities/organization & administration
17.
J Microbiol Immunol Infect ; 54(1): 4-11, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1272562

ABSTRACT

The COVID-19 outbreak has led to a focus by public health practitioners and scholars on ways to limit spread while facing unprecedented challenges and resource constraints. Recent COVID-19-specific enhanced Traffic Control Bundling (eTCB) recommendations provide a cogent framework for managing patient care pathways and reducing health care worker (HCW) and patient exposure to SARS-CoV-2. eTCB has been applied broadly and has proven to be effective in limiting fomite and droplet transmissions in hospitals and between hospitals and the surrounding community. At the same time, resource constrained conditions involving limited personal protective equipment (PPE), low testing availability, and variability in physical space can require modifications in the way hospitals implement eTCB. While eTCB has come to be viewed as a standard of practice, COVID-19 related resource constraints often require hospital implementation teams to customize eTCB solutions. We provide and describe a cross-functional, collaborative on-the-ground adaptive application of eTCB initially piloted at two hospitals and subsequently reproduced at 16 additional hospitals and health systems in the US to date. By effectively facilitating eTCB deployment, hospital leaders and practitioners can establish clearer 'zones of risk' and related protective practices that prevent transmission to HCWs and patients. We outline key insights and recommendations gained from recent implementation under the aforementioned constraints and a cross-functional team process that can be utilized by hospitals to most effectively adapt eTCB under resource constraints.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/prevention & control , Hospitals/statistics & numerical data , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Personal Protective Equipment/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing/standards , Cross Infection/prevention & control , Health Personnel/statistics & numerical data , Hospitals/supply & distribution , Humans , Infection Control/standards , Infection Control/statistics & numerical data , Personal Protective Equipment/standards , SARS-CoV-2/isolation & purification , United States/epidemiology
18.
PLoS One ; 16(6): e0252886, 2021.
Article in English | MEDLINE | ID: covidwho-1269920

ABSTRACT

BACKGROUND: Subgroups of precarious populations such as homeless people are more exposed to infection and at higher risk of developing severe forms of COVID-19 compared to the general population. Many of the recommended prevention measures, such as social distancing and self-isolation, are not feasible for a population living in shelters characterised by physical proximity and a high population density. The objective of the study was to describe SARS-CoV-2 infection prevalence in homeless shelters in Brussels (Belgium), and to identify risk factors and infection control practices associated with SARS-CoV-2 positivity rates. METHODS: A total of 1994 adults were tested by quantitative PCR tests in 52 shelters in Brussels (Belgium) between April and June, 2020, in collaboration with Doctors of the World. SARS-CoV-2 prevalence is here described site by site, and we identify risk factors associated with SARS-CoV-2 positivity rates. We also investigate associations between seropositivity and reported symptoms. RESULTS: We found an overall prevalence of 4.6% for the period, and a cluster of high rates of SARS-CoV-2 positivity (20-30% in two shelters). Among homeless people, being under 40 years of age (OR (CI95%) 2.3 (1.2-4.4), p = 0.02), having access to urgent medical care (AMU) (OR(CI95%): 2.4 (1.4-4.4)], p = 0.02), and sharing a room with someone who tested positive (OR(CI95%): 5.3 (2.9-9.9), p<0.0001) were factors associated with SARS-CoV-2 positivity rates. 93% of those who tested positive were asymptomatic. CONCLUSION: This study shows high rates of SARS-COV-2 infection positive tests in some shelters, with a high proportion of asymptomatic cases. The survey reveals how important testing and isolation measures are, together with actions taken by medical and social workers during the outbreak.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/epidemiology , Homeless Persons/statistics & numerical data , Point-of-Care Testing/statistics & numerical data , SARS-CoV-2/isolation & purification , Adult , Age Factors , Asymptomatic Infections/epidemiology , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/virology , Female , Health Services Accessibility/statistics & numerical data , Humans , Infection Control/organization & administration , Infection Control/standards , Infection Control/statistics & numerical data , Male , Mass Screening/statistics & numerical data , Middle Aged , Pandemics/prevention & control , Pandemics/statistics & numerical data , Prevalence , Risk Factors , SARS-CoV-2/genetics , Young Adult
19.
J Orthop Traumatol ; 22(1): 22, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1269870

ABSTRACT

BACKGROUND: Periprosthetic fractures (PPFs) are a growing matter for orthopaedic surgeons, and patients with PPFs may represent a frail target in the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The purpose of this study is to investigate whether hospital reorganisations during the most severe phase of the SARS-CoV-2 pandemic affected standards of care and early outcomes of patients treated for PPFs in Northern Italy. MATERIALS AND METHODS: Data were retrieved from a multicentre retrospective orthopaedics and traumatology database, including 14 hospitals. The following parameters were studied: demographics, results of nasopharyngeal swabs, prevalence of coronavirus disease 2019 (COVID-19), comorbidities, general health status (EQ-5D-5L Score), frailty (Clinical Frailty Scale, CFS), pain (visual analogue scale, VAS), anaesthesiologic risk (American Society of Anaesthesiology Score, ASA Score), classification (unified classification system, UCS), type of operation and anaesthesia, in-hospital and early complications (Clavien-Dindo Classification, CDC), and length of stay (LOS). Data were analysed by means of descriptive statistics. Out of 1390 patients treated for any reason, 38 PPFs were included. RESULTS: Median age was 81 years (range 70-96 years). Twenty-three patients (60.5%) were swabbed on admission, and two of them (5.3%) tested positive; in three patients (7.9%), the diagnosis of COVID-19 was established on a clinical and radiological basis. Two more patients tested positive post-operatively, and one of them died due to COVID-19. Thirty-three patients (86.8%) presented a proximal femoral PPF. Median ASA Score was 3 (range, 1-4), median VAS score on admission was 3 (range, 0-6), median CFS was 4 (range, 1-8), median EQ-5D-5L Score was 3 in each one of the categories (range, 1-5). Twenty-three patients (60.5%) developed post-operative complications, and median CDC grade was 3 (range, 1-5). The median LOS was 12.8 days (range 2-36 days), and 21 patients (55.3%) were discharged home. CONCLUSIONS: The incidence of PPFs did not seem to change during the lockdown. Patients were mainly elderly with comorbidities, and complications were frequently recorded post-operatively. Despite the difficult period for the healthcare system, hospitals were able to provide effective conventional surgical treatments for PPFs, which were not negatively influenced by the reorganisation. Continued efforts are required to optimise the treatment of these frail patients in the period of the pandemic, minimising the risk of contamination, and to limit the incidence of PPFs in the future. LEVEL OF EVIDENCE: IV.


Subject(s)
COVID-19 , Hospital Restructuring , Infection Control , Pandemics , Periprosthetic Fractures , Standard of Care , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/standards , Communicable Disease Control/statistics & numerical data , Comorbidity , Female , Frailty/epidemiology , Hospital Restructuring/organization & administration , Hospital Restructuring/standards , Hospital Restructuring/statistics & numerical data , Humans , Incidence , Infection Control/methods , Infection Control/standards , Infection Control/statistics & numerical data , Italy/epidemiology , Male , Orthopedic Procedures/methods , Orthopedic Procedures/standards , Orthopedic Procedures/statistics & numerical data , Pandemics/statistics & numerical data , Periprosthetic Fractures/complications , Periprosthetic Fractures/epidemiology , Periprosthetic Fractures/surgery , Periprosthetic Fractures/therapy , Retrospective Studies , SARS-CoV-2 , Standard of Care/standards , Standard of Care/statistics & numerical data
20.
Plast Reconstr Surg ; 148(1): 168e-169e, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1263729

Subject(s)
COVID-19/prevention & control , Infection Control/organization & administration , Pandemics/prevention & control , Surgery Department, Hospital/organization & administration , Surgery, Plastic/organization & administration , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , COVID-19 Testing/trends , Egypt/epidemiology , Elective Surgical Procedures/standards , Elective Surgical Procedures/statistics & numerical data , Elective Surgical Procedures/trends , Health Policy , Humans , Infection Control/standards , Infection Control/statistics & numerical data , Infection Control/trends , Reconstructive Surgical Procedures/standards , Reconstructive Surgical Procedures/statistics & numerical data , Reconstructive Surgical Procedures/trends , SARS-CoV-2/isolation & purification , Surgery Department, Hospital/standards , Surgery Department, Hospital/statistics & numerical data , Surgery Department, Hospital/trends , Surgery, Plastic/standards , Surgery, Plastic/statistics & numerical data , Surgery, Plastic/trends , Telemedicine/organization & administration , Telemedicine/standards , Telemedicine/statistics & numerical data , Tertiary Care Centers/organization & administration , Tertiary Care Centers/standards , Tertiary Care Centers/statistics & numerical data , Tertiary Care Centers/trends , Triage/organization & administration , Triage/standards , Triage/statistics & numerical data , Triage/trends
SELECTION OF CITATIONS
SEARCH DETAIL