Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Lancet Infect Dis ; 20(7): 775-776, 2020 07.
Article in English | MEDLINE | ID: covidwho-1778518
3.
PLoS Comput Biol ; 18(2): e1009795, 2022 02.
Article in English | MEDLINE | ID: covidwho-1753173

ABSTRACT

Mathematical models have come to play a key role in global pandemic preparedness and outbreak response: helping to plan for disease burden, hospital capacity, and inform nonpharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pandemic, with transmission models-and, by consequence, modelers-guiding global, national, and local responses to SARS-CoV-2. However, these models have largely not accounted for the social and structural factors, which lead to socioeconomic, racial, and geographic health disparities. In this piece, we raise and attempt to clarify several questions relating to this important gap in the research and practice of infectious disease modeling: Why do epidemiologic models of emerging infections typically ignore known structural drivers of disparate health outcomes? What have been the consequences of a framework focused primarily on aggregate outcomes on infection equity? What should be done to develop a more holistic approach to modeling-based decision-making during pandemics? In this review, we evaluate potential historical and political explanations for the exclusion of drivers of disparity in infectious disease models for emerging infections, which have often been characterized as "equal opportunity infectors" despite ample evidence to the contrary. We look to examples from other disease systems (HIV, STIs) and successes in including social inequity in models of acute infection transmission as a blueprint for how social connections, environmental, and structural factors can be integrated into a coherent, rigorous, and interpretable modeling framework. We conclude by outlining principles to guide modeling of emerging infections in ways that represent the causes of inequity in infection as central rather than peripheral mechanisms.


Subject(s)
Health Equity , Infections , Models, Statistical , Socioeconomic Factors , COVID-19 , Computational Biology , Disease Outbreaks , Humans , Infections/epidemiology , Infections/transmission , SARS-CoV-2
4.
Infect Dis Clin North Am ; 36(1): xiii-xiv, 2022 03.
Article in English | MEDLINE | ID: covidwho-1747959
5.
Front Immunol ; 13: 780839, 2022.
Article in English | MEDLINE | ID: covidwho-1686482

ABSTRACT

Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.


Subject(s)
Infections/immunology , Infections/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Animals , COVID-19/immunology , Humans , Immunity, Innate/immunology , SARS-CoV-2
7.
BMJ ; 376: e067519, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1622028

ABSTRACT

OBJECTIVE: To assess the impact of the covid-19 pandemic on hospital admission rates and mortality outcomes for childhood respiratory infections, severe invasive infections, and vaccine preventable disease in England. DESIGN: Population based observational study of 19 common childhood respiratory, severe invasive, and vaccine preventable infections, comparing hospital admission rates and mortality outcomes before and after the onset of the pandemic in England. SETTING: Hospital admission data from every NHS hospital in England from 1 March 2017 to 30 June 2021 with record linkage to national mortality data. POPULATION: Children aged 0-14 years admitted to an NHS hospital with a selected childhood infection from 1 March 2017 to 30 June 2021. MAIN OUTCOME MEASURES: For each infection, numbers of hospital admissions every month from 1 March 2017 to 30 June 2021, percentage changes in the number of hospital admissions before and after 1 March 2020, and adjusted odds ratios to compare 60 day case fatality outcomes before and after 1 March 2020. RESULTS: After 1 March 2020, substantial and sustained reductions in hospital admissions were found for all but one of the 19 infective conditions studied. Among the respiratory infections, the greatest percentage reductions were for influenza (mean annual number admitted between 1 March 2017 and 29 February 2020 was 5379 and number of children admitted from 1 March 2020 to 28 February 2021 was 304, 94% reduction, 95% confidence interval 89% to 97%), and bronchiolitis (from 51 655 to 9423, 82% reduction, 95% confidence interval 79% to 84%). Among the severe invasive infections, the greatest reduction was for meningitis (50% reduction, 47% to 52%). For the vaccine preventable infections, reductions ranged from 53% (32% to 68%) for mumps to 90% (80% to 95%) for measles. Reductions were seen across all demographic subgroups and in children with underlying comorbidities. Corresponding decreases were also found for the absolute numbers of 60 day case fatalities, although the proportion of children admitted for pneumonia who died within 60 days increased (age-sex adjusted odds ratio 1.71, 95% confidence interval 1.43 to 2.05). More recent data indicate that some respiratory infections increased to higher levels than usual after May 2021. CONCLUSIONS: During the covid-19 pandemic, a range of behavioural changes (adoption of non-pharmacological interventions) and societal strategies (school closures, lockdowns, and restricted travel) were used to reduce transmission of SARS-CoV-2, which also reduced admissions for common and severe childhood infections. Continued monitoring of these infections is required as social restrictions evolve.


Subject(s)
COVID-19/epidemiology , Infections/epidemiology , Pandemics , Adolescent , Child , Child, Preschool , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Infections/mortality , Male , Quarantine , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/mortality , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/mortality
9.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article in English | MEDLINE | ID: covidwho-1568038

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Subject(s)
Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
10.
Hematology Am Soc Hematol Educ Program ; 2021(1): 587-591, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1566498

ABSTRACT

Infections are a major cause of morbidity and can result in mortality in long-term survivors after allogeneic hematopoietic cell transplantation. Chronic graft-versus-host disease and delayed immune reconstitution are recognized risk factors. Different strategies must be utilized depending on the individual patient's situation but include prolonged antimicrobial prophylaxis and vaccination. Some important infections due to pathogens preventable by vaccination are pneumococci, influenza, varicella-zoster virus, and SARS-CoV-2. Despite the fact that such recommendations have been in place for decades, implementation of these recommendations has been reported to be poor.


Subject(s)
Bacterial Infections/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Mycoses/prevention & control , Vaccination , Virus Diseases/prevention & control , Aged , Bacterial Infections/etiology , COVID-19/etiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Humans , Infections/etiology , Male , Mycoses/etiology , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods , Vaccination/adverse effects , Vaccination/methods , Vaccines/adverse effects , Vaccines/therapeutic use , Virus Diseases/etiology
11.
Anal Biochem ; 635: 114445, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1565506

ABSTRACT

The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.


Subject(s)
Infections/diagnosis , Magnetite Nanoparticles , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , COVID-19/diagnosis , Helicobacter Infections/diagnosis , Helicobacter pylori/isolation & purification , Human papillomavirus 16/isolation & purification , Humans , Papillomavirus Infections/diagnosis , Pneumonia, Mycoplasma/diagnosis , SARS-CoV-2/isolation & purification
12.
Adv Sci (Weinh) ; 8(23): e2102593, 2021 12.
Article in English | MEDLINE | ID: covidwho-1559092

ABSTRACT

Fast and accurate identification of microbial pathogens is critical for the proper treatment of infections. Traditional culture-based diagnosis in clinics is increasingly supplemented by metagenomic next-generation-sequencing (mNGS). Here, RNA/cDNA-targeted sequencing (meta-transcriptomics using NGS (mtNGS)) is established to reduce the host nucleotide percentage in clinic samples and by combining with Oxford Nanopore Technology (ONT) platforms (meta-transcriptomics using third-generation sequencing, mtTGS) to improve the sequencing time. It shows that mtNGS improves the ratio of microbial reads, facilitates bacterial identification using multiple-strategies, and discovers fungi, viruses, and antibiotic resistance genes, and displaying agreement with clinical findings. Furthermore, longer reads in mtTGS lead to additional improvement in pathogen identification and also accelerate the clinical diagnosis. Additionally, primary tests utilizing direct-RNA sequencing and targeted sequencing of ONT show that ONT displays important potential but must be further developed. This study presents the potential of RNA-targeted pathogen identification in clinical samples, especially when combined with the newest developments in ONT.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , High-Throughput Nucleotide Sequencing/methods , Infections/genetics , Metagenomics/methods , RNA/genetics , Sequence Analysis, RNA/methods , Aged , Bronchoalveolar Lavage/methods , Female , Humans , Male , Metagenome/genetics , Middle Aged
13.
Nat Rev Immunol ; 20(7): 408-409, 2020 07.
Article in English | MEDLINE | ID: covidwho-1550297
14.
Clin Perinatol ; 48(2): xv-xvii, 2021 06.
Article in English | MEDLINE | ID: covidwho-1525741
15.
Nat Commun ; 12(1): 6571, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514413

ABSTRACT

The Post-Acute Sequelae of SARS-CoV-2 infection (PASC) have been characterized; however, the burden of PASC remains unknown. Here we used the healthcare databases of the US Department of Veterans Affairs to build a cohort of 181,384 people with COVID-19 and 4,397,509 non-infected controls and estimated that burden of PASC-defined as the presence of at least one sequela in excess of non-infected controls-was 73.43 (72.10, 74.72) per 1000 persons at 6 months. Burdens of individual sequelae varied by demographic groups (age, race, and sex) but were consistently higher in people with poorer baseline health and in those with more severe acute infection. In sum, the burden of PASC is substantial; PASC is non-monolithic with sequelae that are differentially expressed in various population groups. Collectively, our results may be useful in informing health systems capacity planning and care strategies of people with PASC.


Subject(s)
COVID-19/complications , Infections/virology , SARS-CoV-2/pathogenicity , Aged , COVID-19/etiology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cohort Studies , Databases, Factual , Disease Progression , Female , Health Status , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , United States , Veterans Health Services
16.
J Am Soc Nephrol ; 32(3): 708-722, 2021 03.
Article in English | MEDLINE | ID: covidwho-1496675

ABSTRACT

BACKGROUND: Late antibody-mediated rejection (ABMR) is a leading cause of transplant failure. Blocking IL-6 has been proposed as a promising therapeutic strategy. METHODS: We performed a phase 2 randomized pilot trial to evaluate the safety (primary endpoint) and efficacy (secondary endpoint analysis) of the anti-IL-6 antibody clazakizumab in late ABMR. The trial included 20 kidney transplant recipients with donor-specific, antibody-positive ABMR ≥365 days post-transplantation. Patients were randomized 1:1 to receive 25 mg clazakizumab or placebo (4-weekly subcutaneous injections) for 12 weeks (part A), followed by a 40-week open-label extension (part B), during which time all participants received clazakizumab. RESULTS: Five (25%) patients under active treatment developed serious infectious events, and two (10%) developed diverticular disease complications, leading to trial withdrawal. Those receiving clazakizumab displayed significantly decreased donor-specific antibodies and, on prolonged treatment, modulated rejection-related gene-expression patterns. In 18 patients, allograft biopsies after 51 weeks revealed a negative molecular ABMR score in seven (38.9%), disappearance of capillary C4d deposits in five (27.8%), and resolution of morphologic ABMR activity in four (22.2%). Although proteinuria remained stable, the mean eGFR decline during part A was slower with clazakizumab compared with placebo (-0.96; 95% confidence interval [95% CI], -1.96 to 0.03 versus -2.43; 95% CI, -3.40 to -1.46 ml/min per 1.73 m2 per month, respectively, P=0.04). During part B, the slope of eGFR decline for patients who were switched from placebo to clazakizumab improved and no longer differed significantly from patients initially allocated to clazakizumab. CONCLUSIONS: Although safety data indicate the need for careful patient selection and monitoring, our preliminary efficacy results suggest a potentially beneficial effect of clazakizumab on ABMR activity and progression.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Graft Rejection/therapy , Interleukin-6/antagonists & inhibitors , Kidney Transplantation/adverse effects , Adult , Allografts , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Female , Glomerular Filtration Rate , Graft Rejection/immunology , Graft Rejection/physiopathology , Humans , Infections/etiology , Interleukin-6/immunology , Isoantibodies/blood , Male , Middle Aged , Tissue Donors , Treatment Outcome , Young Adult
17.
PLoS One ; 16(6): e0253110, 2021.
Article in English | MEDLINE | ID: covidwho-1496435

ABSTRACT

BACKGROUND: The World Health Organization recommends inpatient hospital treatment of young infants up to two months old with any sign of possible serious infection. However, each sign may have a different risk of death. The current study aims to calculate the case fatality ratio for infants with individual or combined signs of possible serious infection, stratified by inpatient or outpatient treatment. METHODS: We analysed data from the African Neonatal Sepsis Trial conducted in five sites in the Democratic Republic of the Congo, Kenya and Nigeria. Trained study nurses classified sick infants as pneumonia (fast breathing in 7-59 days old), severe pneumonia (fast breathing in 0-6 days old), clinical severe infection [severe chest indrawing, high (> = 38°C) or low body temperature (<35.5°C), stopped feeding well, or movement only when stimulated] or critical illness (convulsions, not able to feed at all, or no movement at all), and referred them to a hospital for inpatient treatment. Infants whose caregivers refused referral received outpatient treatment. The case fatality ratio by day 15 was calculated for individual and combined clinical signs and stratified by place of treatment. An infant with signs of clinical severe infection or severe pneumonia was recategorised as having low- (case fatality ratio ≤2%) or moderate- (case fatality ratio >2%) mortality risk. RESULTS: Of 7129 young infants with a possible serious infection, fast breathing (in 7-59 days old) was the most prevalent sign (26%), followed by high body temperature (20%) and severe chest indrawing (19%). Infants with pneumonia had the lowest case fatality ratio (0.2%), followed by severe pneumonia (2.0%), clinical severe infection (2.3%) and critical illness (16.9%). Infants with clinical severe infection had a wide range of case fatality ratios for individual signs (from 0.8% to 11.0%). Infants with pneumonia had similar case fatality ratio for outpatient and inpatient treatment (0.2% vs. 0.3%, p = 0.74). Infants with clinical severe infection or severe pneumonia had a lower case fatality ratio among those who received outpatient treatment compared to inpatient treatment (1.9% vs. 6.5%, p<0.0001). We recategorised infants into low-mortality risk signs (case fatality ratio ≤2%) of clinical severe infection (high body temperature, or severe chest indrawing) or severe pneumonia and moderate-mortality risk signs (case fatality ratio >2%) (stopped feeding well, movement only when stimulated, low body temperature or multiple signs of clinical severe infection). We found that both categories had four times lower case fatality ratio when treated as outpatient than inpatient treatment, i.e., 1.0% vs. 4.0% (p<0.0001) and 5.3% vs. 22.4% (p<0.0001), respectively. In contrast, infants with signs of critical illness had nearly two times higher case fatality ratio when treated as outpatient versus inpatient treatment (21.7% vs. 12.1%, p = 0.097). CONCLUSIONS: The mortality risk differs with clinical signs. Young infants with a possible serious infection can be grouped into those with low-mortality risk signs (high body temperature, or severe chest indrawing or severe pneumonia); moderate-mortality risk signs (stopped feeding well, movement only when stimulated, low body temperature or multiple signs of clinical severe infection), or high-mortality risk signs (signs of critical illness). New treatment strategies that consider differential mortality risks for the place of treatment and duration of inpatient treatment could be developed and evaluated based on these findings. CLINICAL TRIAL REGISTRATION: This trial was registered with the Australian New Zealand Clinical Trials Registry under ID ACTRN 12610000286044.


Subject(s)
Fever/complications , Health Facilities/statistics & numerical data , Hospitalization/statistics & numerical data , Infant Mortality/trends , Infections/mortality , Pneumonia/mortality , Anti-Infective Agents/therapeutic use , Body Temperature , Democratic Republic of the Congo/epidemiology , Female , Humans , Infant , Infant, Newborn , Infections/drug therapy , Infections/epidemiology , Kenya/epidemiology , Male , Nigeria/epidemiology , Pneumonia/drug therapy , Pneumonia/epidemiology
18.
19.
Curr Drug Discov Technol ; 17(1): 30-44, 2020.
Article in English | MEDLINE | ID: covidwho-1453168

ABSTRACT

The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, ß-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.


Subject(s)
Anti-Infective Agents/pharmacology , Chalcones/pharmacology , Drug Discovery/trends , Infections/drug therapy , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Chalcones/chemistry , Chalcones/therapeutic use , Humans , Structure-Activity Relationship
20.
Am J Epidemiol ; 190(4): 611-620, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1447566

ABSTRACT

The reproductive number, or reproduction number, is a valuable metric in understanding infectious disease dynamics. There is a large body of literature related to its use and estimation. In the last 15 years, there has been tremendous progress in statistically estimating this number using case notification data. These approaches are appealing because they are relevant in an ongoing outbreak (e.g., for assessing the effectiveness of interventions) and do not require substantial modeling expertise to be implemented. In this article, we describe these methods and the extensions that have been developed. We provide insight into the distinct interpretations of the estimators proposed and provide real data examples to illustrate how they are implemented. Finally, we conclude with a discussion of available software and opportunities for future development.


Subject(s)
Disease Outbreaks/statistics & numerical data , Infections/epidemiology , Basic Reproduction Number , Global Health , Humans , Morbidity/trends , Software
SELECTION OF CITATIONS
SEARCH DETAIL