Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.715
Filter
Add filters

Document Type
Year range
1.
Cytokine ; 149: 155755, 2022 01.
Article in English | MEDLINE | ID: covidwho-1632232

ABSTRACT

This study analyzed the levels at admission of biomarkers for their association with and ability to predict risk of severe outcomes, including admission to the ICU, need for invasive mechanical ventilation (IMV), need for vasopressor use (VU), and in-hospital mortality (IHM) in 700 patients hospitalized with COVID-19. Biomarker data split by outcomes was compared using Mann-Whitney U tests; frequencies of biomarker values were compared using Chi-square tests and multivariable logistic regression analysis was performed to look at the impact of biomarkers by outcome. Patients that suffered IHM were more likely to have reduced platelet numbers and high blood urea nitrogen (BUN) levels among patients admitted to the ICU. Risk factors for mortality were related to hyper-coagulability (low platelet count and increased D-dimer) and decreased respiratory (PaO2/FiO2 ratio) and kidney function (BUN). Association with risks of other severe outcomes were as follows: ICU with hyper-inflammation (IL-6) and decreased respiratory function; IMV with low platelet count, abnormal neutrophil-lymphocyte ratio with reduced respiratory function, VU with inflammatory markers (IL-6), and low platelet count with respiratory function. Our studies confirmed the association of biomarkers of hematological, inflammatory, coagulation, pulmonary and kidney functions with disease severity. Whether these biomarkers have any mechanistic or causal role in the disease progress requires further investigation.


Subject(s)
Biomarkers/metabolism , COVID-19/metabolism , COVID-19/pathology , Aged , Female , Hospital Mortality , Hospitalization , Humans , Inflammation/metabolism , Inflammation/pathology , Intensive Care Units , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index
2.
Virol J ; 18(1): 211, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1622247

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus is the causing agent of the Coronavirus disease 2019 (COVID-19) characterized by a huge pro-inflammatory response and coagulation disorders that may lead to for its severe forms, in organ failure or even death. As major players of thrombo-inflammation, platelets release large amounts of immunomodulatory molecules and regulate leukocyte and endothelial activity, which are both altered in COVID-19. Altogether, this makes platelets a very likely actor of the thrombo-inflammatory complications of COVID-19. Thus, we propose to identify a platelet inflammatory signature of severe COVID-19 specifically modulated throughout the course of the disease. METHODS: Luminex technology and enzyme-linked immunosorbent assay were used to assess plasma levels of platelet inflammatory markers in patients with severe acute respiratory syndrome coronavirus 2 infection on admission and for 14 days afterwards. RESULTS: In accordance with the observations of other teams, we evidence that the plasma levels of the platelet soluble (s)CD40L is significantly elevated in the early stages of the disease. Interestingly we observe that the plasma level of sCD40L decreases overtime while that of sCD62P increases significantly. CONCLUSIONS: Our data suggest that there is a platelet signature of inflammatory response to SARS-COv-2 infection which varies overtime and could serve as monitoring biomarkers of patient inflammatory state. CLINICAL TRIAL REGISTRATION NUMBER: 2020-A01100-39; title: Human Ab Response & immunoMONItoring of COVID-19 Patients, registration date: 05/25/2020; URL of the registry: https://clinicaltrials.gov/ct2/history/NCT04373200?V_5=View .


Subject(s)
Biomarkers/blood , Blood Platelets/immunology , COVID-19 , Inflammation , Adult , Aged , COVID-19/blood , COVID-19/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Male , Middle Aged , Young Adult
3.
PLoS One ; 17(1): e0262342, 2022.
Article in English | MEDLINE | ID: covidwho-1622361

ABSTRACT

PURPOSE: Coronavirus disease-2019 (COVID-19) is associated with a wide spectrum of clinical symptoms including acute respiratory failure. Biomarkers that can predict outcomes in patients with COVID-19 can assist with patient management. The aim of this study is to evaluate whether procalcitonin (PCT) can predict clinical outcome and bacterial superinfection in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). METHODS: Adult patients diagnosed with SARS-CoV-2 by nasopharyngeal PCR who were admitted to a tertiary care center in Boston, MA with SARS-CoV-2 infection between March 17 and April 30, 2020 with a baseline PCT value were studied. Patients who were presumed positive for SARS-CoV-2, who lacked PCT levels, or who had a positive urinalysis with negative cultures were excluded. Demographics, clinical and laboratory data were extracted from the electronic medical records. RESULTS: 324 patient charts were reviewed and grouped by clinical and microbiologic outcomes by day 28. Baseline PCT levels were significantly higher for patients who were treated for true bacteremia (p = 0.0005) and bacterial pneumonia (p = 0.00077) compared with the non-bacterial infection group. Baseline PCT positively correlated with the NIAID ordinal scale and survival over time. When compared to other inflammatory biomarkers, PCT showed superiority in predicting bacteremia. CONCLUSIONS: Baseline PCT levels are associated with outcome and bacterial superinfection in patients hospitalized with SARS-CoV-2.


Subject(s)
Bacterial Infections/metabolism , COVID-19/metabolism , Procalcitonin/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , Boston , Case-Control Studies , Female , Humans , Inflammation/metabolism , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/pathogenicity
4.
Cell Mol Biol Lett ; 27(1): 6, 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1622208

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is associated with a high mortality rate. The majority of deaths in this disease are caused by ARDS (acute respiratory distress syndrome) followed by cytokine storm and coagulation complications. Although alterations in the level of the number of coagulation factors have been detected in samples from COVID-19 patients, the direct molecular mechanism which has been involved in this pathologic process has not been explored yet. The PI3K/AKT signaling pathway is an intracellular pathway which plays a central role in cell survival. Also, in recent years the association between this pathway and coagulopathies has been well clarified. Therefore, based on the evidence on over-activity of the PI3K/AKT signaling pathway in SARS-CoV-2 infection, in the current review, the probable role of this cellular pathway as a therapeutic target for the prevention of coagulation complications in patients with COVID-19 is discussed.


Subject(s)
Blood Coagulation Disorders/etiology , Blood Coagulation , COVID-19/complications , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/metabolism , COVID-19/blood , COVID-19/metabolism , Humans , Inflammation/blood , Inflammation/etiology , Inflammation/metabolism , Molecular Targeted Therapy , SARS-CoV-2/physiology
5.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616112

ABSTRACT

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Fenamates/pharmacology , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Animals , COVID-19/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
6.
Curr Opin Nephrol Hypertens ; 31(1): 36-46, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1612725

ABSTRACT

PURPOSE OF REVIEW: Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS: SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY: In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Insufficiency, Chronic , Thrombosis , Acute Kidney Injury/etiology , COVID-19/complications , Fibrosis , Humans , Inflammation , Kidney/pathology , Lipids , Renal Insufficiency, Chronic/pathology , SARS-CoV-2 , Thrombosis/pathology
7.
Anal Chem ; 94(2): 1333-1341, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1606902

ABSTRACT

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.


Subject(s)
COVID-19 , Protons , Biomarkers , Female , Glycoproteins , Humans , Inflammation , Magnetic Resonance Spectroscopy , Phospholipids , Pregnancy , SARS-CoV-2 , Serum
8.
J Immunotoxicol ; 18(1): 23-29, 2021 12.
Article in English | MEDLINE | ID: covidwho-1593522

ABSTRACT

The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.


Subject(s)
Benzylidene Compounds/pharmacology , COVID-19/drug therapy , Cholinergic Agents/pharmacology , Inflammation/drug therapy , Nicotine/metabolism , Pyridines/pharmacology , SARS-CoV-2/physiology , Tobacco Use Disorder/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Cigarette Smoking/adverse effects , Dexamethasone/therapeutic use , HMGB1 Protein/blood , Humans , Pandemics , alpha7 Nicotinic Acetylcholine Receptor/agonists
9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1595265

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2-specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Monocytes/immunology , SARS-CoV-2/pathogenicity , Adult , B-Lymphocytes/immunology , COVID-19/pathology , Child , Coculture Techniques , Ebolavirus/pathogenicity , Epithelial Cells/virology , Gene Expression Profiling , Humans , Inflammation , Influenza A virus/pathogenicity , Lung/immunology , Myeloid Cells/immunology , Species Specificity , Viral Proteins/immunology
10.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1594167

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
11.
JAMA Netw Open ; 4(12): e2141328, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1592856

ABSTRACT

Importance: Hospitalized patients with COVID-19 pneumonia have high rates of morbidity and mortality. Objective: To assess the efficacy of colchicine in hospitalized patients with COVID-19 pneumonia. Design, Setting, and Participants: The Estudios Clínicos Latino América (ECLA) Population Health Research Institute (PHRI) COLCOVID trial was a multicenter, open-label, randomized clinical trial performed from April 17, 2020, to March 28, 2021, in adults with confirmed or suspected SARS-CoV-2 infection followed for up to 28 days. Participants received colchicine vs usual care if they were hospitalized with COVID-19 symptoms and had severe acute respiratory syndrome or oxygen desaturation. The main exclusion criteria were clear indications or contraindications for colchicine, chronic kidney disease, and negative results on a reverse transcription-polymerase chain reaction test for SARS-CoV-2 before randomization. Data were analyzed from June 20 to July 25, 2021. Interventions: Patients were assigned in a 1:1 ratio to usual care or usual care plus colchicine. Colchicine was administered orally in a loading dose of 1.5 mg immediately after randomization, followed by 0.5 mg orally within 2 hours of the initial dose and 0.5 mg orally twice a day for 14 days or discharge, whichever occurred first. Main Outcomes and Measures: The first coprimary outcome was the composite of a new requirement for mechanical ventilation or death evaluated at 28 days. The second coprimary outcome was death at 28 days. Results: A total of 1279 hospitalized patients (mean [SD] age, 61.8 [14.6] years; 449 [35.1%] women and 830 [64.9%] men) were randomized, including 639 patients in the usual care group and 640 patients in the colchicine group. Corticosteroids were used in 1171 patients (91.5%). The coprimary outcome of mechanical ventilation or 28-day death occurred in 160 patients (25.0%) in the colchicine group and 184 patients (28.8%) in the usual care group (hazard ratio [HR], 0.83; 95% CI, 0.67-1.02; P = .08). The second coprimary outcome, 28-day death, occurred in 131 patients (20.5%) in the colchicine group and 142 patients (22.2%) in the usual care group (HR, 0.88; 95% CI, 0.70-1.12). Diarrhea was the most frequent adverse effect of colchicine, reported in 68 patients (11.3%). Conclusions and Relevance: This randomized clinical trial found that compared with usual care, colchicine did not significantly reduce mechanical ventilation or 28-day mortality in patients hospitalized with COVID-19 pneumonia. Trial Registration: ClinicalTrials.gov Identifier: NCT04328480.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Colchicine/therapeutic use , Hospitalization , Intubation, Intratracheal , Respiration, Artificial , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anti-Inflammatory Agents/adverse effects , COVID-19/mortality , COVID-19/pathology , Colchicine/adverse effects , Female , Humans , Inflammation/drug therapy , Inflammation/etiology , Male , Middle Aged , SARS-CoV-2 , Standard of Care
12.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
13.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article in English | MEDLINE | ID: covidwho-1580688

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the pandemic Coronavirus Disease 19 (COVID-19), causing millions of deaths. The elderly and those already living with comorbidity are likely to die after SARS-CoV-2 infection. People suffering from Alzheimer's disease (AD) have a higher risk of becoming infected, because they cannot easily follow health roles. Additionally, those suffering from dementia have a 40% higher risk of dying from COVID-19. Herein, we collected from Gene Expression Omnibus repository the brain samples of AD patients who died of COVID-19 (AD+COVID-19), AD without COVID-19 (AD), COVID-19 without AD (COVID-19) and control individuals. We inspected the transcriptomic and interactomic profiles by comparing the COVID-19 cohort against the control cohort and the AD cohort against the AD+COVID-19 cohort. SARS-CoV-2 in patients without AD mainly activated processes related to immune response and cell cycle. Conversely, 21 key nodes in the interactome are deregulated in AD. Interestingly, some of them are linked to beta-amyloid production and clearance. Thus, we inspected their role, along with their interactors, using the gene ontologies of the biological process that reveals their contribution in brain organization, immune response, oxidative stress and viral replication. We conclude that SARS-CoV-2 worsens the AD condition by increasing neurotoxicity, due to higher levels of beta-amyloid, inflammation and oxidative stress.


Subject(s)
Alzheimer Disease/genetics , COVID-19/complications , COVID-19/genetics , Alzheimer Disease/complications , Alzheimer Disease/virology , Amyloid beta-Peptides/metabolism , Brain/virology , COVID-19/physiopathology , Comorbidity/trends , Databases, Factual , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Inflammation/metabolism , Neurotoxicity Syndromes/metabolism , Oxidative Stress/physiology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Transcriptome/genetics
14.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1580687

ABSTRACT

COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.


Subject(s)
Blood Platelets/physiology , COVID-19/blood , Thrombosis/pathology , Blood Coagulation , Blood Coagulation Disorders/etiology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19/metabolism , Cytokine Release Syndrome , Endothelial Cells/pathology , Fibrin Fibrinogen Degradation Products , Hemostasis , Humans , Inflammation , Phenotype , Platelet Activation/physiology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Thrombocytopenia/metabolism , Thrombosis/metabolism , Thrombosis/virology
15.
Medicina (Kaunas) ; 57(12)2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1580587

ABSTRACT

Mediterranean Diet represents the traditional eating habits of populations living around the Mediterranean Sea, and it is associated with a lower risk of overall mortality and cancer incidence and cardiovascular diseases. Severe acute respiratory syndrome coronavirus 2 is a new pandemic, and represents a significant and critical threat to global human health. In this study, we aimed to review the possible effects of Mediterranean Diet against the risk of the coronavirus disease 2019. Several vitamins, minerals, fatty acids, and phytochemicals with their potential anti-COVID-19 activity are presented. Different risk factors may increase or reduce the probability of contracting the disease. Mediterranean Diet has also a positive action on inflammation and immune system and could have a protective effect against severe acute respiratory syndrome coronavirus 2. Further studies are needed to corroborate the benefits of the Mediterranean Diet protective role on infection with SARS-CoV-2.


Subject(s)
COVID-19 , Diet, Mediterranean , Humans , Inflammation , Pandemics , SARS-CoV-2
16.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580557

ABSTRACT

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Subject(s)
Interleukin-6/metabolism , Lamiaceae/chemistry , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Transcription Factor RelA/metabolism , Animals , Ethanol/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
17.
Int Immunopharmacol ; 103: 108463, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587490

ABSTRACT

Therapeutics that impair the innate immune responses of the liver during the inflammatory cytokine storm like that occurring in COVID-19 are greatly needed. Much interest is currently directed toward Janus kinase (JAK) inhibitors as potential candidates to mitigate this life-threatening complication. Accordingly, this study investigated the influence of the novel JAK inhibitor ruxolitinib (RXB) on concanavalin A (Con A)-induced hepatitis and systemic hyperinflammation in mice to simulate the context occurring in COVID-19 patients. Mice were orally treated with RXB (75 and 150 mg/kg) 2 h prior to the intravenous administration of Con A (20 mg/kg) for a period of 12 h. The results showed that RXB pretreatments were efficient in abrogating Con A-instigated hepatocellular injury (ALT, AST, LDH), necrosis (histopathology), apoptosis (cleaved caspase-3) and nuclear proliferation due to damage (PCNA). The protective mechanism of RXB were attributed to i) prevention of Con A-enhanced hepatic production and systemic release of the proinflammatory cytokines TNF-α, IFN-γ and IL-17A, which coincided with decreasing infiltration of immune cells (monocytes, neutrophils), ii) reducing Con A-induced hepatic overexpression of IL-1ß and CD98 alongside NF-κB activation, and iii) lessening Con A-induced consumption of GSH and GSH peroxidase and generation of oxidative stress products (MDA, 4-HNE, NOx) in the liver. In summary, JAK inhibition by RXB led to eminent protection of the liver against Con A-deleterious manifestations primarily via curbing the inflammatory cytokine storm driven by TNF-α, IFN-γ and IL-17A.


Subject(s)
Concanavalin A/toxicity , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/drug therapy , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Aldehydes/metabolism , Animals , Chemical and Drug Induced Liver Injury , Dose-Response Relationship, Drug , Inflammation/chemically induced , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred BALB C , Nitrates/metabolism , Nitriles/administration & dosage , Nitrites/metabolism , Oxidative Stress , Peroxidase/metabolism , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage
18.
Hamostaseologie ; 41(6): 428-432, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1585711

ABSTRACT

Thrombus formation has been identified as an integral part in innate immunity, termed immunothrombosis. Activation of host defense systems is known to result in a procoagulant environment. In this system, cellular players as well as soluble mediators interact with each other and their dysregulation can lead to the pathological process of thromboinflammation. These mechanisms have been under intensified investigation during the COVID-19 pandemic. In this review, we focus on the underlying mechanisms leading to thromboinflammation as one trigger of venous thromboembolism.


Subject(s)
COVID-19 , Thrombosis , Venous Thromboembolism , Humans , Immunity, Innate , Inflammation , Pandemics , SARS-CoV-2
19.
Biol Chem ; 403(2): 231-241, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1581684

ABSTRACT

Thrombosis has long been reported as a potentially deadly complication of respiratory viral infections and has recently received much attention during the global coronavirus disease 2019 pandemic. Increased risk of myocardial infarction has been reported during active infections with respiratory viruses, including influenza and severe acute respiratory syndrome coronavirus 2, which persists even after the virus has cleared. These clinical observations suggest an ongoing interaction between these respiratory viruses with the host's coagulation and immune systems that is initiated at the time of infection but may continue long after the virus has been cleared. In this review, we discuss the epidemiology of viral-associated myocardial infarction, highlight recent clinical studies supporting a causal connection, and detail how the virus' interaction with the host's coagulation and immune systems can potentially mediate arterial thrombosis.


Subject(s)
COVID-19 , Influenza, Human , Thrombosis , Humans , Inflammation , Influenza, Human/complications , SARS-CoV-2 , Thrombosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...