Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add filters

Document Type
Year range
1.
Ann Med ; 53(1): 181-188, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575964

ABSTRACT

OBJECTIVE: To illustrate the effect of corticosteroids and heparin, respectively, on coronavirus disease 2019 (COVID-19) patients' CD8+ T cells and D-dimer. METHODS: In this retrospective cohort study involving 866 participants diagnosed with COVID-19, patients were grouped by severity. Generalized additive models were established to explore the time-course association of representative parameters of coagulation, inflammation and immunity. Segmented regression was performed to examine the influence of corticosteroids and heparin upon CD8+ T cell and D-dimer, respectively. RESULTS: There were 541 moderate, 169 severe and 156 critically ill patients involved in the study. Synchronous changes of levels of NLR, D-dimer and CD8+ T cell in critically ill patients were observed. Administration of methylprednisolone before 14 DFS compared with those after 14 DFS (ß = 0.154%, 95% CI=(0, 0.302), p=.048) or a dose lower than 40 mg per day compared with those equals to 40 mg per day (ß = 0.163%, 95% CI=(0.027, 0.295), p=.020) significantly increased the rising rate of CD8+ T cell in 14-56 DFS. CONCLUSIONS: The parameters of coagulation, inflammation and immunity were longitudinally correlated, and an early low-dose corticosteroid treatment accelerated the regaining of CD8+ T cell to help battle against SARS-Cov-2 in critical cases of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , COVID-19/drug therapy , Glucocorticoids/administration & dosage , Inflammation/drug therapy , Adult , Aged , Aged, 80 and over , Blood Coagulation/drug effects , Blood Coagulation/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/immunology , Heparin/administration & dosage , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Linear Models , Longitudinal Studies , Lymphocyte Count , Male , Methylprednisolone/administration & dosage , Middle Aged , Models, Biological , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Time-to-Treatment , Young Adult
2.
mSphere ; 6(5): e0075221, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1526451

ABSTRACT

During the progression of coronavirus disease 2019 (COVID-19), immune response and inflammation reactions are dynamic events that develop rapidly and are associated with the severity of disease. Here, we aimed to develop a predictive model based on the immune and inflammatory response to discriminate patients with severe COVID-19. COVID-19 patients were enrolled, and their demographic and immune inflammatory reaction indicators were collected and analyzed. Logistic regression analysis was performed to identify the independent predictors, which were further used to construct a predictive model. The predictive performance of the model was evaluated by receiver operating characteristic curve, and optimal diagnostic threshold was calculated; these were further validated by 5-fold cross-validation and external validation. We screened three key indicators, including neutrophils, eosinophils, and IgA, for predicting severe COVID-19 and obtained a combined neutrophil, eosinophil, and IgA ratio (NEAR) model (NEU [109/liter] - 150×EOS [109/liter] + 3×IgA [g/liter]). NEAR achieved an area under the curve (AUC) of 0.961, and when a threshold of 9 was applied, the sensitivity and specificity of the predicting model were 100% and 88.89%, respectively. Thus, NEAR is an effective index for predicting the severity of COVID-19 and can be used as a powerful tool for clinicians to make better clinical decisions. IMPORTANCE The immune inflammatory response changes rapidly with the progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is responsible for clearance of the virus and further recovery from the infection. However, the intensified immune and inflammatory response in the development of the disease may lead to more serious and fatal consequences, which indicates that immune indicators have the potential to predict serious cases. Here, we identified both eosinophils and serum IgA as prognostic markers of COVID-19, which sheds light on new research directions and is worthy of further research in the scientific research field as well as clinical application. In this study, the combination of NEU count, EOS count, and IgA level was included in a new predictive model of the severity of COVID-19, which can be used as a powerful tool for better clinical decision-making.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Clinical Decision Rules , Severity of Illness Index , Adult , Aged , Biomarkers/blood , COVID-19/blood , Clinical Decision-Making/methods , Disease Progression , Eosinophils/metabolism , Female , Humans , Immunoglobulin A/blood , Inflammation/blood , Inflammation/diagnosis , Inflammation/virology , Logistic Models , Male , Middle Aged , Neutrophils/metabolism , Predictive Value of Tests , Prognosis , Sensitivity and Specificity
3.
Front Immunol ; 12: 738093, 2021.
Article in English | MEDLINE | ID: covidwho-1518484

ABSTRACT

Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Subject(s)
COVID-19/blood , Receptors, Urokinase Plasminogen Activator/blood , SARS-CoV-2 , Adult , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Proteins/analysis , COVID-19/immunology , Cytokines/blood , Humans , Inflammation/blood , Inflammation/immunology , Middle Aged , Myeloid Cells/immunology , Proteome/analysis , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Severity of Illness Index , Young Adult
4.
Virol J ; 18(1): 211, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1486585

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus is the causing agent of the Coronavirus disease 2019 (COVID-19) characterized by a huge pro-inflammatory response and coagulation disorders that may lead to for its severe forms, in organ failure or even death. As major players of thrombo-inflammation, platelets release large amounts of immunomodulatory molecules and regulate leukocyte and endothelial activity, which are both altered in COVID-19. Altogether, this makes platelets a very likely actor of the thrombo-inflammatory complications of COVID-19. Thus, we propose to identify a platelet inflammatory signature of severe COVID-19 specifically modulated throughout the course of the disease. METHODS: Luminex technology and enzyme-linked immunosorbent assay were used to assess plasma levels of platelet inflammatory markers in patients with severe acute respiratory syndrome coronavirus 2 infection on admission and for 14 days afterwards. RESULTS: In accordance with the observations of other teams, we evidence that the plasma levels of the platelet soluble (s)CD40L is significantly elevated in the early stages of the disease. Interestingly we observe that the plasma level of sCD40L decreases overtime while that of sCD62P increases significantly. CONCLUSIONS: Our data suggest that there is a platelet signature of inflammatory response to SARS-COv-2 infection which varies overtime and could serve as monitoring biomarkers of patient inflammatory state. CLINICAL TRIAL REGISTRATION NUMBER: 2020-A01100-39; title: Human Ab Response & immunoMONItoring of COVID-19 Patients, registration date: 05/25/2020; URL of the registry: https://clinicaltrials.gov/ct2/history/NCT04373200?V_5=View .


Subject(s)
Biomarkers/blood , Blood Platelets/immunology , COVID-19 , Inflammation , Adult , Aged , COVID-19/blood , COVID-19/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Male , Middle Aged , Young Adult
5.
Indian J Pathol Microbiol ; 64(4): 735-740, 2021.
Article in English | MEDLINE | ID: covidwho-1485280

ABSTRACT

Background: COVID-19 is a pandemic viral disease that has affected the Indian population very badly with more than 8.46 million cases and > 0.125 million deaths. Aim: Primary objective of the study is to establish the role of hematological, coagulation and inflammatory biomarkers in early identification of clinically severe covid-19 cases. Materials and Methods: This study was conducted from July 2020 to August 2020 at a dedicated COVID-19 referral hospital in central India. Only RT-PCR confirmed COVID-19 positive 300 cases admitted in the hospital were included in this study. Based on the clinical assessment, patients were categorised as mild, moderate, and severe groups as per ICMR guidelines. Blood samples of all cases were tested for haematological, coagulation and inflammatory biomarkers and mean values were compared among the three groups of patients. Results: 46% patients belonged to >60 years of age group. Hematological parameters like total leukocyte count, absolute neutrophil count, Neutrophil: Lymphocyte ratio, Platelet: Lymphocyte ratio significantly increased with lymphocytopenia (P=0.001). Coagulation profile(D-dimer and PT) and inflammatory biomarkers like CRP, LDH, ferritin, procalcitonin and NT- Pro BNP, all were significantly increased with severity of patients(p=0.001). ROC plotted for all the parameters between severe v/s non-severe cases showed that CRP, LDH and D-dimer had a good discriminative precision with AUC >0.8. Conclusion: We suggest that biochemical markers like CRP, LDH and D-dimer can be used as a screening tool to differentiate severe patients from non-severe patients of Covid-19 disease in order to identify severe disease at early stage for optimal utilization of resources & reducing further morbidity & mortality.


Subject(s)
Biomarkers/blood , Blood Coagulation/physiology , COVID-19/physiopathology , Early Diagnosis , Inflammation/blood , Inflammation/physiopathology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Female , Humans , India , Male , Middle Aged , Predictive Value of Tests , Prognosis , SARS-CoV-2
6.
PLoS One ; 16(10): e0258684, 2021.
Article in English | MEDLINE | ID: covidwho-1480452

ABSTRACT

AIMS: Patients with cardiovascular comorbidities have a significantly increased risk for a critical course of COVID-19. As the SARS-CoV2 virus enters cells via the angiotensin-converting enzyme receptor II (ACE2), drugs which interact with the renin angiotensin aldosterone system (RAAS) were suspected to influence disease severity. METHODS AND RESULTS: We analyzed 1946 consecutive patients with cardiovascular comorbidities or hypertension enrolled in one of the largest European COVID-19 registries, the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. Here, we show that angiotensin II receptor blocker intake is associated with decreased mortality in patients with COVID-19 [OR 0.75 (95% CI 0,59-0.96; p = 0.013)]. This effect was mainly driven by patients, who presented in an early phase of COVID-19 at baseline [OR 0,64 (95% CI 0,43-0,96; p = 0.029)]. Kaplan-Meier analysis revealed a significantly lower incidence of death in patients on an angiotensin receptor blocker (ARB) (n = 33/318;10,4%) compared to patients using an angiotensin-converting enzyme inhibitor (ACEi) (n = 60/348;17,2%) or patients who received neither an ACE-inhibitor nor an ARB at baseline in the uncomplicated phase (n = 90/466; 19,3%; p<0.034). Patients taking an ARB were significantly less frequently reaching the mortality predicting threshold for leukocytes (p<0.001), neutrophils (p = 0.002) and the inflammatory markers CRP (p = 0.021), procalcitonin (p = 0.001) and IL-6 (p = 0.049). ACE2 expression levels in human lung samples were not altered in patients taking RAAS modulators. CONCLUSION: These data suggest a beneficial effect of ARBs on disease severity in patients with cardiovascular comorbidities and COVID-19, which is linked to dampened systemic inflammatory activity.


Subject(s)
Angiotensin Receptor Antagonists/administration & dosage , COVID-19 , Hypertension , Registries , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Biomarkers/blood , COVID-19/blood , COVID-19/drug therapy , COVID-19/mortality , Comorbidity , Disease-Free Survival , Female , Humans , Hypertension/blood , Hypertension/drug therapy , Hypertension/mortality , Inflammation/blood , Inflammation/drug therapy , Inflammation/mortality , Male , Middle Aged , Severity of Illness Index , Survival Rate
7.
Eur Rev Med Pharmacol Sci ; 25(19): 5889-5903, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478931

ABSTRACT

OBJECTIVE: Evidence supports a sex disparity in clinical outcomes of COVID-19 patients, with men exhibiting higher mortality rates compared to women. We aimed to test the correlation between serum levels of sex hormones [total testosterone, estradiol (E2), estradiol to testosterone (E2/T) ratio, progesterone), prolactin and 25-hydroxyvitamin D [25(OH)D] and markers of inflammation, coagulation and sepsis at admission in hospitalized men with COVID-19. PATIENTS AND METHODS: We conducted an exploratory retrospective study including symptomatic men with confirmed SARS-CoV-2 infection who were consecutively admitted to our Institution between April 1 and May 31, 2020. RESULTS: Patients were divided into survivors (n=20) and non-survivors (n=39). As compared to survivors, non-survivors showed significantly higher median neutrophil-to-lymphocyte ratio (NLR) values, D-dimer and procalcitonin (PCT) levels, along with significantly lower median 25(OH)D levels and total testosterone levels. Non-survivors exhibited significantly higher median values of E2/T ratio (a marker of aromatase activity). Spearman's correlation analysis revealed that total testosterone levels were significantly and inversely correlated with NLR, high-sensitivity C-reactive protein (hsCRP), interleukin-6, D-dimer and PCT. Conversely, E2/T ratio values were significantly and positively correlated with the aforementioned markers and with white blood cell (WBC) count. In a multivariate analysis performed by a logistic regression model after adjusting for major confounders (age, body mass index, hypertension and cardiovascular disease, diabetes mellitus and malignancy), total testosterone levels were significantly and inversely associated with risk of COVID-19-related in-hospital mortality. CONCLUSIONS: Low total testosterone levels and elevated E2/T ratio values at admission are associated with hyperinflammatory state in hospitalized men with COVID-19. Low total testosterone levels at admission represent an independent risk factor for in-hospital mortality in such patients. Therefore, total testosterone and E2/T ratio may serve as prognostic markers of disease severity in this population.


Subject(s)
COVID-19/blood , COVID-19/mortality , Estradiol/blood , Inflammation/blood , Inflammation/etiology , Testosterone/blood , Vitamin D/analogs & derivatives , Adult , Aged , Aged, 80 and over , Fibrin Fibrinogen Degradation Products/analysis , Hospital Mortality , Hospitalization , Humans , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Procalcitonin/blood , Retrospective Studies , Risk Factors , Severity of Illness Index , Survival Analysis , Vitamin D/blood
8.
J Immunol Res ; 2021: 8669098, 2021.
Article in English | MEDLINE | ID: covidwho-1476888

ABSTRACT

Objective: This study explored the consistency and differences in the immune cells and cytokines between patients with COVID-19 or cancer. We further analyzed the correlations between the acute inflammation and cancer-related immune disorder. Methods: This retrospective study involved 167 COVID-19 patients and 218 cancer patients. COVID-19 and cancer were each further divided into two subgroups. Quantitative and qualitative variables were measured by one-way ANOVA and chi-square test, respectively. Herein, we carried out a correlation analysis between immune cells and cytokines and used receiver operating characteristic (ROC) curves to discover the optimal diagnostic index. Results: COVID-19 and cancers were associated with lymphopenia and high levels of monocytes, neutrophils, IL-6, and IL-10. IL-2 was the optimal indicator to differentiate the two diseases. Compared with respiratory cancer patients, COVID-19 patients had lower levels of IL-2 and higher levels of CD3+CD4+ T cells and CD19+ B cells. In the subgroup analysis, IL-6 was the optimal differential diagnostic parameter that had the ability to identify if COVID-19 patients would be severely affected, and severe COVID-19 patients had lower levels of lymphocyte subsets (CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+T cells, and CD19+ B cells) and CD16+CD56+ NK cells and higher level of neutrophils. There were significant differences in the levels of CD3+CD4+ T cells and CD19+ B cells between T1-2 and T3-4 stages as well as IL-2 and CD19+ B cells between N0-1 and N2-3 stages while no significant differences between the metastatic and nonmetastatic cancer patients. Additionally, there were higher correlations between IL-2 and IL-4, TNF-α and IL-2, TNF-α and IL-4, TNF-α and IFN-γ, and CD16+CD56+NK cells and various subsets of T cells in COVID-19 patients. There was a higher correlation between CD3+CD4+ T cells and CD19+ B cells in cancer patients. Conclusion: Inflammation associated with COVID-19 or cancer had effects on patients' outcomes. Accompanied by changes in immune cells and cytokines, there were consistencies, differences, and satisfactory correlations between patients with COVID-19 and those with cancers.


Subject(s)
COVID-19/immunology , Cytokines/blood , Lymphopenia/blood , Monocytes/immunology , Neoplasms/immunology , Neutrophils/immunology , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , COVID-19/diagnosis , COVID-19/pathology , Female , Humans , Inflammation/blood , Inflammation/pathology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/pathology , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
9.
JAMA Netw Open ; 4(10): e2127172, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1449897

ABSTRACT

Importance: Serum ferritin, an acute phase marker of inflammation, has several physiologic functions, including limiting intracellular oxidative stress. Whether the effectiveness of corticosteroids differs according to serum ferritin level in COVID-19 has not been reported. Objective: To examine the association between admission serum ferritin level and methylprednisolone treatment outcomes in nonintubated patients with severe COVID-19. Design, Setting, and Participants: This retrospective cohort study included patients with severe COVID-19 admitted to an academic referral center in Stony Brook, New York, from March 1 to April 15, 2020, receiving high-flow oxygen therapy (fraction of inspired oxygen, ≥50%). The outcomes of treatment with methylprednisolone were estimated using inverse probability of treatment weights, based on a propensity score comprised of clinical and laboratory variables. Patients were followed up for 28 days. Data were analyzed from December 19, 2020, to July 22, 2021. Exposures: Systemic methylprednisolone administered per the discretion of the treating physician. Main Outcomes and Measures: The primary outcome was mortality, and the secondary outcome was a composite of death or mechanical ventilation at 28 days. Results: Among 380 patients with available ferritin data (median [IQR] age, 60 years [49-72] years; 130 [34.2%] women; 250 [65.8%] men; 310 White patients [81.6%]; 47 Black patients [12.4%]; 23 Asian patients [6.1%]), 142 patients (37.4%) received methylprednisolone (median [IQR] daily dose, 160 [120-240] mg). Ferritin levels were similar in patients who received methylprednisolone vs those who did not (median [IQR], 992 [509-1610] ng/mL vs 893 [474-1467] ng/mL; P = .32). In weighted analyses using tertiles of ferritin values (lower: 29-619 ng/mL; middle: 623-1316 ng/mL; upper: 1322-13 418 ng/mL), methylprednisolone was associated with lower mortality in patients with ferritin in the upper tertile (HR, 0.16; 95% CI, 0.06-0.45) and higher mortality in those with ferritin in the middle (HR, 2.46; 95% CI, 1.15-5.28) and lower (HR, 2.43; 95% CI, 1.13-5.22) tertiles (P for interaction < .001). Composite end point rates were lower with methylprednisolone in patients with ferritin in the upper tertile (HR, 0.45; 95% CI, 0.25-0.80) but not in those with ferritin in the middle (HR, 0.83; 95% CI, 0.50-1.39) and lower (HR, 0.89; 95% CI, 0.51-1.55) tertiles (P for interaction = .11). Conclusions and Relevance: In this cohort study of nonintubated patients with severe COVID-19, methylprednisolone was associated with improved clinical outcomes only among patients with admission ferritin in the upper tertile of values.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/drug therapy , Ferritins/blood , Inflammation/blood , Methylprednisolone/therapeutic use , Severity of Illness Index , African Americans , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Hospitalization , Humans , Male , Middle Aged , New York , Oxygen Inhalation Therapy , Pneumonia , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
10.
Int J Immunopathol Pharmacol ; 35: 20587384211048026, 2021.
Article in English | MEDLINE | ID: covidwho-1440891

ABSTRACT

COVID-19 is a highly heterogeneous and complex medical disorder; indeed, severe COVID-19 is probably amongst the most complex of medical conditions known to medical science. While enormous strides have been made in understanding the molecular pathways involved in patients infected with coronaviruses an overarching and comprehensive understanding of the pathogenesis of COVID-19 is lacking. Such an understanding is essential in the formulation of effective prophylactic and treatment strategies. Based on clinical, proteomic, and genomic studies as well as autopsy data severe COVID-19 disease can be considered to be the connection of three basic pathologic processes, namely a pulmonary macrophage activation syndrome with uncontrolled inflammation, a complement-mediated endothelialitis together with a procoagulant state with a thrombotic microangiopathy. In addition, platelet activation with the release of serotonin and the activation and degranulation of mast cells contributes to the hyper-inflammatory state. Auto-antibodies have been demonstrated in a large number of hospitalized patients which adds to the end-organ damage and pro-thrombotic state. This paper provides a clinical overview of the major pathogenetic mechanism leading to severe COVID-19 disease.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/immunology , COVID-19/physiopathology , Complement Activation , Complement System Proteins/metabolism , Cytokines/blood , Disease Progression , Host-Pathogen Interactions , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/physiopathology , Inflammation/virology , Inflammation Mediators/blood , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/physiopathology , Macrophage Activation Syndrome/virology , Platelet Activation , SARS-CoV-2/immunology , Serotonin/blood , Severity of Illness Index , Thrombotic Microangiopathies/blood , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/physiopathology , Thrombotic Microangiopathies/virology
11.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article in English | MEDLINE | ID: covidwho-1438630

ABSTRACT

A high incidence of thromboembolic events associated with high mortality has been reported in severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections with respiratory failure. The present study characterized post-transcriptional gene regulation by global microRNA (miRNA) expression in relation to activated coagulation and inflammation in 21 critically ill SARS-CoV-2 patients. The cohort consisted of patients with moderate respiratory failure (n = 11) and severe respiratory failure (n = 10) at an acute stage (day 0-3) and in the later course of the disease (>7 days). All patients needed supplemental oxygen and severe patients were defined by the requirement of positive pressure ventilation (intubation). Levels of D-dimers, activated partial thromboplastin time (aPTT), C-reactive protein (CRP), and interleukin (IL)-6 were significantly higher in patients with severe compared with moderate respiratory failure. Concurrently, next generation sequencing (NGS) analysis demonstrated increased dysregulation of miRNA expression with progression of disease severity connected to extreme downregulation of miR-320a, miR-320b and miR-320c. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed involvement in the Hippo signaling pathway, the transforming growth factor (TGF)-ß signaling pathway and in the regulation of adherens junctions. The expression of all miR-320 family members was significantly correlated with CRP, IL-6, and D-dimer levels. In conclusion, our analysis underlines the importance of thromboembolic processes in patients with respiratory failure and emphasizes miRNA-320s as potential biomarkers for severe progressive SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/genetics , MicroRNAs/genetics , Respiratory Insufficiency/etiology , Respiratory Insufficiency/genetics , Aged , Aged, 80 and over , Blood Coagulation , COVID-19/blood , Disease Progression , Down-Regulation , Female , Humans , Inflammation/blood , Inflammation/etiology , Inflammation/genetics , Male , MicroRNAs/blood , Middle Aged , Respiratory Insufficiency/blood , SARS-CoV-2/isolation & purification , Severity of Illness Index
12.
Cell Rep ; 37(1): 109793, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415261

ABSTRACT

The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/immunology , HIV Infections/blood , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/immunology , Sepsis/blood , Transcriptome , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokines/blood , Data Analysis , Datasets as Topic , HIV Infections/immunology , HIV-1/immunology , Humans , Inflammation/blood , Leukocytes, Mononuclear/immunology , Sepsis/immunology , Single-Cell Analysis
13.
Front Immunol ; 12: 716361, 2021.
Article in English | MEDLINE | ID: covidwho-1399137

ABSTRACT

Background: COVID-19 pathology is associated with exuberant inflammation, vascular damage, and activation of coagulation. In addition, complement activation has been described and is linked to disease pathology. However, few studies have been conducted in cancer patients. Objective: This study examined complement activation in response to COVID-19 in the setting of cancer associated thromboinflammation. Methods: Markers of complement activation (C3a, C5a, sC5b-9) and complement inhibitors (Factor H, C1-Inhibitor) were evaluated in plasma of cancer patients with (n=43) and without (n=43) COVID-19 and stratified based on elevated plasma D-dimer levels (>1.0 µg/ml FEU). Markers of vascular endothelial cell dysfunction and platelet activation (ICAM-1, thrombomodulin, P-selectin) as well as systemic inflammation (pentraxin-3, serum amyloid A, soluble urokinase plasminogen activator receptor) were analyzed to further evaluate the inflammatory response. Results: Increases in circulating markers of endothelial cell dysfunction, platelet activation, and systemic inflammation were noted in cancer patients with COVID-19. In contrast, complement activation increased in cancer patients with COVID-19 and elevated D-dimers. This was accompanied by decreased C1-Inhibitor levels in patients with D-dimers > 5 ug/ml FEU. Conclusion: Complement activation in cancer patients with COVID-19 is significantly increased in the setting of thromboinflammation. These findings support a link between coagulation and complement cascades in the setting of inflammation.


Subject(s)
COVID-19/immunology , Complement Activation/immunology , Inflammation/immunology , Neoplasms/immunology , SARS-CoV-2/immunology , Thrombosis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Complement Inactivating Agents/blood , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Inflammation/blood , Male , Middle Aged , Neoplasms/blood , Platelet Activation/immunology , Retrospective Studies , SARS-CoV-2/physiology , Thrombosis/blood , Young Adult
15.
Metallomics ; 13(6)2021 06 11.
Article in English | MEDLINE | ID: covidwho-1387958

ABSTRACT

This report provides perspectives concerning dual roles of serum ferritin as a measure of both iron status and inflammation. We suggest benefits of a lower range of serum ferritin as has occurred for total serum cholesterol and fasting blood glucose levels. Observations during a prospective randomized study using phlebotomy in patients with peripheral arterial disease offered unique insights into dual roles of serum ferritin both as an iron status marker and acute phase reactant. Robust positive associations between serum ferritin, interleukin 6 [IL-6], tissue necrosis factor-alpha, and high sensitivity C-reactive protein were discovered. Elevated serum ferritin and IL-6 levels associated with increased mortality and with reduced mortality at ferritin levels <100 ng mL-1. Epidemiologic studies demonstrate similar outcomes. Extremely elevated ferritin and IL-6 levels also occur in individuals with high mortality due to SARS-CoV-2 infection. Disordered iron metabolism reflected by a high range of serum ferritin level signals disease severity and outcomes. Based upon experimental and epidemiologic data, we suggest testing the hypotheses that optimal ferritin levels for cardiovascular mortality reduction range from 20 to 100 ng mL-1 with % transferrin levels from 20 to 50%, to ensure adequate iron status and that ferritin levels above 194 ng mL-1 associate with all-cause mortality in population cohorts.


Subject(s)
Ferritins/blood , Inflammation/blood , Iron/blood , Peripheral Arterial Disease/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Phlebotomy/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Transferrin/analysis
16.
Nat Commun ; 12(1): 4677, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387356

ABSTRACT

SARS-CoV-2 infection can affect all human beings, including pregnant women. Thus, understanding the immunological changes induced by the virus during pregnancy is nowadays of pivotal importance. Here, using peripheral blood from 14 pregnant women with asymptomatic or mild SARS-CoV-2 infection, we investigate cell proliferation and cytokine production, measure plasma levels of 62 cytokines, and perform a 38-parameter mass cytometry analysis. Our results show an increase in low density neutrophils but no lymphopenia or gross alterations of white blood cells, which display normal levels of differentiation, activation or exhaustion markers and show well preserved functionality. Meanwhile, the plasma levels of anti-inflammatory cytokines such as interleukin (IL)-1RA, IL-10 and IL-19 are increased, those of IL-17, PD-L1 and D-dimer are decreased, but IL-6 and other inflammatory molecules remain unchanged. Our profiling of antiviral immune responses may thus help develop therapeutic strategies to avoid virus-induced damages during pregnancy.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Adolescent , Adult , Asymptomatic Infections , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Case-Control Studies , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/prevention & control , Inflammation/virology , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/blood , SARS-CoV-2/isolation & purification , Young Adult
17.
Cells ; 10(9)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1379972

ABSTRACT

There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Inflammation/complications , Thrombosis/complications , Animals , Humans , Inflammation/blood , Nucleotides/metabolism , Platelet Activation , Signal Transduction , Thrombosis/blood
18.
Front Immunol ; 12: 720363, 2021.
Article in English | MEDLINE | ID: covidwho-1376702

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) can manifest as a viral-induced hyperinflammation with multiorgan dysfunction. It has been documented that severe COVID-19 is associated with higher levels of inflammatory mediators than a mild disease, and tracking these markers may allow early identification or even prediction of disease progression. It is well known that C-reactive protein (CRP) is the acute-phase protein and the active regulator of host innate immunity, which is highly predictive of the need for mechanical ventilation and may guide escalation of treatment of COVID-19-related uncontrolled inflammation. There are numerous causes of an elevated CRP, including acute and chronic responses, and these can be infectious or non-infectious in etiology. CRP are normally lacking in viral infections, while adaptive immunity appears to be essential for COVID-19 virus clearance, and the macrophage activation syndrome may explain the high serum CRP contents and contribute to the disease progression. Nevertheless, for the assessment of host inflammatory status and identification of viral infection in other pathologies, such as bacterial sepsis, the acute-phase proteins, including CRP and procalcitonin, can provide more important information for guiding clinical diagnosis and antibiotic therapy. This review is aimed to highlight the current and most recent studies with regard to the clinical significance of CRP in severe COVID-19 and other viral associated illnesses, including update advances on the implication of CRP and its form specifically on the pathogenesis of these diseases. The progressive understanding in these areas may be translated into promising measures to prevent severe outcomes and mitigate appropriate treatment modalities in critical COVID-19 and other viral infections.


Subject(s)
C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Humans , Inflammation/blood , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Influenza, Human/complications , Stroke/blood , Virus Diseases
19.
J Gerontol A Biol Sci Med Sci ; 76(10): 1775-1783, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1358442

ABSTRACT

Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.


Subject(s)
COVID-19 , Intercellular Signaling Peptides and Proteins , Longevity/immunology , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cell Line , Cytokines/blood , Cytotoxicity, Immunologic/drug effects , Female , Humans , Immunologic Factors/immunology , Immunologic Factors/pharmacology , Inflammation/blood , Inflammation/immunology , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/immunology , Italy/epidemiology , Male , Prognosis , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/immunology , Severity of Illness Index
20.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: covidwho-1332524

ABSTRACT

The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.


Subject(s)
COVID-19/therapy , Immunoglobulins, Intravenous/therapeutic use , Administration, Intravenous , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Humans , Immunity/immunology , Immunoglobulins/immunology , Immunoglobulins/therapeutic use , Immunoglobulins, Intravenous/immunology , Inflammation/blood , Inflammation/therapy , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...