Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
1.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 14(2): e1763, 2022 03.
Article in English | MEDLINE | ID: covidwho-2173486

ABSTRACT

Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.


Subject(s)
Acute Lung Injury , Nanoparticles , Pneumonia , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Humans , Inflammation/drug therapy , Lung , Nanoparticles/therapeutic use , Pneumonia/drug therapy , Pneumonia/pathology
2.
Immun Inflamm Dis ; 10(12): e737, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127750

ABSTRACT

INTRODUCTION: It is important to control both inflammation and immunosuppression after severe insults, such as sepsis, trauma, and surgery. Endotoxin tolerance is one of the immunosuppressive conditions and it has been known that endotoxin tolerance relates to poorer clinical outcomes in patients with severe insults. This study investigated whether whey protein hydrolysate (WPH) mitigates inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. METHODS: Endotoxin tolerance can be experimentally reproduced by two consecutive stimulations with lipopolysaccharide (LPS). THP-1 cells were incubated with LPS and WPH (first stimulation). After collecting the culture supernatant to evaluate the effect on inflammation, the cells were washed and restimulated by 100 ng/ml LPS (second stimulation). The culture supernatant was again collected to evaluate the effect on endotoxin tolerance. Concentrations of LPS and WPH in the first stimulation were adjusted to evaluate their dose dependency. Cytokine levels in the supernatant were determined by enzyme-linked immunosorbent assay. Statistical analysis was performed using the student's t-test or Dunnett's test. RESULTS: Five mg/ml WPH significantly decreased interleukin (IL)-6 (p = .006) and IL-10 (p < .001) levels after the first LPS stimulation (1000 ng/ml). WPH significantly increased tumor necrosis factor-alpha (p < .001) and IL-10 (p = .014) levels after the second LPS stimulation. The suppressive effect of WPH on inflammation and endotoxin tolerance was dependent on the concentrations of LPS and WPH. The effective dose of WPH for endotoxin tolerance was lower than its effective dose for inflammation. CONCLUSION: WPH mitigated both inflammation and endotoxin tolerance. Therefore, WPH might be a candidate for valuable food ingredients to control both inflammation and immunosuppression after severe insults.


Subject(s)
Interleukin-10 , Leukemia , Humans , THP-1 Cells , Protein Hydrolysates , Lipopolysaccharides , Endotoxin Tolerance , Whey , Inflammation/drug therapy , Interleukin-6
3.
Molecules ; 27(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090286

ABSTRACT

Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and its complications. The animal experiments demonstrated that Lentinus edodes polysaccharides (PLE) had a potential role in alleviating ALI by inhibiting oxidative stress and inflammation, which was manifested by reducing the levels of serum lung injury indicators (C3, hs-CRP, and GGT), reducing the levels of inflammatory factors (TNF-α, IL-1ß, and IL-6), and increasing the activities of antioxidant enzymes (SOD and CAT) in the lung. Furthermore, PLE had the typical characteristics of pyran-type linked by ß-type glycosidic linkages. The conclusions indicated that PLE could be used as functional foods and natural drugs in preventing ALI.


Subject(s)
Acute Lung Injury , COVID-19 , Shiitake Mushrooms , Animals , Oxidative Stress , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Lung , Lipopolysaccharides
4.
Life Sci ; 309: 121048, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061633

ABSTRACT

Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-ß1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1ß), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.


Subject(s)
COVID-19 , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-1beta , SARS-CoV-2 , COVID-19/drug therapy , Fibrosis , Pyridones/pharmacology , Pyridones/therapeutic use , Collagen Type I/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Platelet-Derived Growth Factor , Inflammation/drug therapy , Transforming Growth Factors , Angiotensins
5.
Oxid Med Cell Longev ; 2022: 1061274, 2022.
Article in English | MEDLINE | ID: covidwho-2053393

ABSTRACT

Background: Major depressive disorder (MDD) and treatment-resistant depression (TRD) represent a global source of societal and health burden. To advise proper management of inflammation-related depression among TRD patients, it is important to identify therapeutic clinical treatments. A key factor is related to proinflammatory cytokines such as interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor- (TNF-) α which have been implicated in the pathogenesis of depressive symptoms in MDD patients. Ketamine may provide an anti-inflammatory therapeutic strategy by targeting proinflammatory pathways associated with depressive disorders, which may be exacerbated in the ageing population with TRD. Objective: Despite a burgeoning body of literature demonstrating that inflammation is linked to TRD, there is still a lack of comprehensive research on the relationship between proinflammatory biomarkers and ketamine's antidepressant effect on TRD patients. Method: The Cochrane Library and PubMed/MEDLINE databases were systematically searched from inception up to February 1, 2022, adopting broad inclusion criteria to assess clinical topics related to the impact of ketamine on inflammatory cytokines in TRD patients. The present work is in compliance with the World Health Organization Rapid Review Guide. Results: Five out of the seven studies examined in this review show that ketamine infusion may reduce depressive symptoms with a quick start of effect on TRD patients. Based on the Montgomery-Åsberg Depression Rating Scale (MADRS) and Hamilton Depression Rating Scale (HAM-D) scores, the overall response rate for ketamine was 56%; that is, 56% of those treated with ketamine had MADRS/HAM-D scores decreased by at least 50%. Conclusions: While the anti-inflammatory effects of ketamine modulate specific proinflammatory cytokines, its rapid antidepressant effect on TRD patients remains inconsistent. However, our study findings can provide a reliable basis for future research on how to improve systemic inflammatory immune disorders and mental health. We suggest that ketamine infusion may be part of a comprehensive treatment approach in TRD patients with elevated levels of depression-specific inflammatory biomarkers.


Subject(s)
Depressive Disorder, Major , Ketamine , Adult , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Biomarkers , Cytokines , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Humans , Inflammation/drug therapy , Interleukin-6 , Ketamine/pharmacology , Ketamine/therapeutic use , Treatment Outcome , Tumor Necrosis Factor-alpha
6.
BMC Complement Med Ther ; 22(1): 242, 2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2043124

ABSTRACT

BACKGROUND: Ecklonia cava is an edible marine brown alga harvested from the ocean that is widely consumed in Asian countries as a health-promoting medicinal food The objective of the present study is to evaluate the anti-asthma mechanism of a new functional food produced by bioprocessing edible algae Ecklonia cava and shiitake Lentinula edodes mushroom mycelia and isolated fractions. METHODS: We used as series of methods, including high performance liquid chromatography, gas chromatography, cell assays, and an in vivo mouse assay to evaluate the asthma-inhibitory effect of Ecklonia cava bioprocessed (fermented) with Lentinula edodes shiitake mushroom mycelium and its isolated fractions in mast cells and in orally fed mice. RESULTS: The treatments inhibited the degranulation of RBL-2H3 cells and immunoglobulin E (IgE) production, suggesting anti-asthma effects in vitro. The in vitro anti-asthma effects in cells were confirmed in mice following the induction of asthma by alumina and chicken egg ovalbumin (OVA). Oral administration of the bioprocessed Ecklonia cava and purified fractions suppressed the induction of asthma and was accompanied by the inhibition of inflammation- and immune-related substances, including eotaxin; thymic stromal lymphopoietin (TSLP); OVA-specific IgE; leukotriene C4 (LTC4); prostaglandin D2 (PGD2); and vascular cell adhesion molecule-1 (VCAM-1) in bronchoalveolar lavage fluid (BALF) and other fluids and organs. Th2 cytokines were reduced and Th1 cytokines were restored in serum, suggesting the asthma-induced inhibitory effect is regulated by the balance of the Th1/Th2 immune response. Serum levels of IL-10, a regulatory T cell (Treg) cytokine, were increased, further favoring reduced inflammation. Histology of lung tissues revealed that the treatment also reversed the thickening of the airway wall and the contraction and infiltration of bronchial and blood vessels and perialveolar inflammatory cells. The bioprocessed Ecklonia cava/mushroom mycelia new functional food showed the highest inhibition as compared with commercial algae and the fractions isolated from the bioprocessed product. CONCLUSIONS: The in vitro cell and in vivo mouse assays demonstrate the potential value of the new bioprocessed formulation as an anti-inflammatory and anti-allergic combination of natural compounds against allergic asthma and might also ameliorate allergic manifestations of foods, drugs, and viral infections.


Subject(s)
Agaricales , Anti-Allergic Agents , Anti-Asthmatic Agents , Asthma , Phaeophyta , Shiitake Mushrooms , Aluminum Oxide/adverse effects , Animals , Anti-Allergic Agents/adverse effects , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Cytokines/metabolism , Immunoglobulin E , Inflammation/drug therapy , Interleukin-10 , Leukotriene C4/adverse effects , Mice , Mice, Inbred BALB C , Mycelium , Ovalbumin/adverse effects , Phaeophyta/metabolism , Prostaglandin D2/adverse effects , Shiitake Mushrooms/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects
7.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2023748

ABSTRACT

Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.


Subject(s)
Dry Eye Syndromes , Peptide Hydrolases , Biomarkers , Dry Eye Syndromes/diagnosis , Endopeptidases , Humans , Inflammation/drug therapy , Peptide Hydrolases/therapeutic use , Protease Inhibitors/therapeutic use , Tears
8.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: covidwho-2010115

ABSTRACT

Background: Hyperinflammation is frequently associated with the chronic pain of autoimmune disease and the acute death of coronavirus disease (COVID-19) via a severe cytokine cascade. CIGB-258 (Jusvinza®), an altered peptide ligand with 3 kDa from heat shock protein 60 (HSP60), inhibits the systemic inflammation and cytokine storm, but the precise mechanism is still unknown. Objective: The protective effect of CIGB-258 against inflammatory stress of N-ε-carboxymethyllysine (CML) was tested to provide mechanistic insight. Methods: CIGB-258 was treated to high-density lipoproteins (HDL) and injected into zebrafish and its embryo to test a putative anti-inflammatory activity under presence of CML. Results: Treatment of CML (final 200 µM) caused remarkable glycation of HDL with severe aggregation of HDL particles to produce dysfunctional HDL, which is associated with a decrease in apolipoprotein A-I stability and lowered paraoxonase activity. Degradation of HDL3 by ferrous ions was attenuated by a co-treatment with CIGB-258 with a red-shift of the Trp fluorescence in HDL. A microinjection of CML (500 ng) into zebrafish embryos resulted in the highest embryo death rate, only 18% of survivability with developmental defects. However, co-injection of CIGB-258 (final 1 ng) caused the remarkable elevation of survivability around 58%, as well as normal developmental speed. An intraperitoneal injection of CML (final 250 µg) into adult zebrafish resulted acute paralysis, sudden death, and laying down on the bottom of the cage with no swimming ability via neurotoxicity and inflammation. However, a co-injection of CIGB-258 (1 µg) resulted in faster recovery of the swimming ability and higher survivability than CML alone injection. The CML alone group showed 49% survivability, while the CIGB-258 group showed 97% survivability (p < 0.001) with a remarkable decrease in hepatic inflammation up to 50%. A comparison of efficacy with CIGB-258, Infliximab (Remsima®), and Tocilizumab (Actemra®) showed that the CIGB-258 group exhibited faster recovery and swimming ability with higher survivability than those of the Infliximab group. The CIGB-258 group and Tocilizumab group showed the highest survivability, the lowest plasma total cholesterol and triglyceride level, and the infiltration of inflammatory cells, such as neutrophils in hepatic tissue. Conclusion: CIGB-258 ameliorated the acute neurotoxicity, paralysis, hyperinflammation, and death induced by CML, resulting in higher survivability in zebrafish and its embryos by enhancing the HDL structure and functionality.


Subject(s)
COVID-19 , Lipoproteins, HDL , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Infliximab , Lysine/analogs & derivatives , Paralysis , Zebrafish/metabolism
9.
J Transl Med ; 20(1): 401, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2009425

ABSTRACT

BACKGROUND: Omega-3 may alleviate the severity of coronavirus disease 2019 (COVID-19) by reducing the C-reactive protein (CRP) level, a marker for systemic inflammation. Because the scientific evidence indicating such a role is inconsistent, we aimed to evaluate the effect of Omega-3 on CRP change and CRP level in patients with COVID-19. METHODS: We conducted a comprehensive search on four databases (PubMed, Web of Science, EMBASE, and Scopus). We included all RCTs comparing Omega-3 with a control group regarding their effect on the CRP levels in patients with COVID-19. We used version two of the Cochrane risk of bias assessment tool to appraise the included studies. We extracted data to an online data extraction sheet. The primary outcomes were CRP change from baseline and CRP serum levels. RESULTS: We included four randomized controlled trials (RCTs) with 274 patients in this study. The overall effect estimate favored Omega-3 over the control group in terms of CRP change from baseline (mean difference (MD) =- 2.53, 95% confidence interval (CI): - 4.40, - 0.66) and CRP serum levels at the end of the study (MD =- 6.24, 95% CI: - 11.93, - 0.54). CONCLUSION: Omega-3 showed promising effects on systemic inflammation by reducing CRP levels in COVID-19 patients. Based on this finding, we recommend Omega-3 for COVID-19 patients for its anti-inflammatory actions.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , C-Reactive Protein , COVID-19/drug therapy , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Humans , Inflammation/drug therapy , Randomized Controlled Trials as Topic
10.
J Trop Pediatr ; 68(5)2022 08 04.
Article in English | MEDLINE | ID: covidwho-2008615

ABSTRACT

OBJECTIVES: To describe the clinico-laboratory profile, intensive care needs and outcome of multisystem inflammatory syndrome in children (MIS-C) during the first and second waves. METHODOLOGY: This retrospective study was conducted in the paediatric emergency and paediatric intensive care unit (PICU) of a tertiary care teaching hospital in North India involving 122 children with MIS-C admitted during the first wave (September 2020-January 2021, n = 40) and second wave (February 2021-September 2021, n = 82) of coronavirus disease 2019 (COVID-19). RESULTS: The median (interquartile range) age was 7 (4-10) years and 67% were boys. Common manifestations included fever (99%), abdominal symptoms (81%), rash (66%) and conjunctival injection (65%). Elevated C-reactive protein (97%), D-dimer (89%), procalcitonin (80%), IL-6 (78%), ferritin (56%), N-terminal pro B-type natriuretic peptide (84%) and positive severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antibody (81%) were common laboratory abnormalities. Cardiovascular manifestations included myocardial dysfunction (55%), shock (48%) and coronary artery changes (10%). The treatment included intensive care support (57%), non-invasive (33%) and invasive (18%) ventilation, vasoactive drugs (47%), intravenous immunoglobulin (IVIG) (83%), steroids (85%) and aspirin (87%). The mortality was 5% (n = 6). During the second wave, a significantly higher proportion had positive SARS-CoV-2 antibody, contact with COVID-19 and oral mucosal changes; lower markers of inflammation; lower proportion had lymphopenia, elevated IL-6 and ferritin; lower rates of shock, myocardial dysfunction and coronary artery changes; lesser need of PICU admission, fluid boluses, vasoactive drugs and IVIG; and shorter hospital stay. CONCLUSION: MIS-C is a febrile multisystemic disease characterized by hyperinflammation, cardiovascular involvement, temporal relationship to SARS-CoV-2 and good outcome with immunomodulation and intensive care. During the second wave, the severity of illness, degree of inflammation, intensive care needs, and requirement of immunomodulation were less as compared to the first wave.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/therapy , Child , Critical Care , Female , Ferritins , Humans , Immunoglobulins, Intravenous/therapeutic use , Inflammation/drug therapy , Interleukin-6 , Male , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy
11.
Nitric Oxide ; 128: 72-102, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1996454

ABSTRACT

Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.


Subject(s)
COVID-19 , Hydrogen Sulfide , Antiviral Agents , Humans , Hydrogen Sulfide/therapeutic use , Inflammation/drug therapy , Nitric Oxide/therapeutic use , Pandemics , SARS-CoV-2
12.
Mol Immunol ; 150: 99-113, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996438

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.


Subject(s)
COVID-19 , Thrombosis , Antibodies, Monoclonal , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Complement C1 Inhibitor Protein/therapeutic use , Disease Progression , Endothelial Cells , Humans , Inflammation/drug therapy , Kallikreins , Kinins , SARS-CoV-2 , Thromboinflammation , Thrombosis/drug therapy
13.
Biomed Pharmacother ; 154: 113593, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996035

ABSTRACT

The proceeding pandemic of coronavirus disease 2019 is the latest global challenge. Like most other infectious diseases, inflammation, oxidative stress, and immune system dysfunctions play a pivotal role in the pathogenesis of COVID-19. Furthermore, the quest of finding a potential pharmaceutical therapy for preventing and treating COVID-19 is still ongoing. Silymarin, a mixture of flavonolignans extracted from the milk thistle, has exhibited numerous therapeutic benefits. We reviewed the beneficial effects of silymarin on oxidative stress, inflammation, and the immune system, as primary factors involved in the pathogenesis of COVID-19. We searched PubMed/Medline, Web of Science, Scopus, and Science Direct databases up to April 2022 using the relevant keywords. In summary, the current review indicates that silymarin might exert therapeutic effects against COVID-19 by improving the antioxidant system, attenuating inflammatory response and respiratory distress, and enhancing immune system function. Silymarin can also bind to target proteins of SARS-CoV-2, including main protease, spike glycoprotein, and RNA-dependent RNA-polymerase, leading to the inhibition of viral replication. Although multiple lines of evidence suggest the possible promising impacts of silymarin in COVID-19, further clinical trials are encouraged.


Subject(s)
COVID-19 , Silymarin , Antioxidants/pharmacology , Antioxidants/therapeutic use , COVID-19/drug therapy , Humans , Inflammation/drug therapy , Polyphenols/pharmacology , Polyphenols/therapeutic use , RNA , SARS-CoV-2 , Silybin/therapeutic use , Silymarin/pharmacology , Silymarin/therapeutic use
14.
Inflammopharmacology ; 30(5): 1493-1501, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1971761

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytokines , Humans , Inflammation/drug therapy , Oleanolic Acid/analogs & derivatives , Reactive Oxygen Species , SARS-CoV-2
15.
J Nanobiotechnology ; 20(1): 335, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1935529

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) pneumonia is a major cause of morbidity and mortality in immunodeficiency individuals, including transplant recipients and Acquired Immune Deficiency Syndrome patients. Antiviral drugs ganciclovir (GCV) and phosphonoformate (PFA) are first-line agents for pneumonia caused by herpesvirus infection. However, the therapy suffers from various limitations such as low efficiency, drug resistance, toxicity, and lack of specificity. METHODS: The antiviral drugs GCV and PFA were loaded into the pH-responsive nanoparticles fabricated by poly(lactic-co-glycolic acid) (PLGA) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and further coated with cell membranes derived from bone marrow mesenchymal stem cells to form artificial stem cells, namely MPDGP. We evaluated the viral suppression effects of MPDGP in vitro and in vivo. RESULTS: MPDGP showed significant inflammation tropism and efficient suppression of viral replication and virus infection-associated inflammation in the CMV-induced pneumonia model. The synergistic effects of the combination of viral DNA elongation inhibitor GCV and viral DNA polymerase inhibitor PFA on suppressing the inflammation efficiently. CONCLUSION: The present study develops a novel therapeutic intervention using artificial stem cells to deliver antiviral drugs at inflammatory sites, which shows great potential for the targeted treatment of pneumonia. To our best knowledge, we are the first to fabricate this kind of artificial stem cell to deliver antiviral drugs for pneumonia treatment.


Subject(s)
Antiviral Agents , Nanoparticle Drug Delivery System , Pneumonia/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytomegalovirus , Cytomegalovirus Infections/drug therapy , Fatty Acids, Monounsaturated/chemistry , Foscarnet/pharmacology , Foscarnet/therapeutic use , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Humans , Inflammation/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Quaternary Ammonium Compounds/chemistry , Stem Cells
16.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1964013

ABSTRACT

Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.


Subject(s)
Iron Overload , Animals , Benzoates/therapeutic use , Deferasirox/therapeutic use , Deferiprone , Deferoxamine/therapeutic use , Inflammation/complications , Inflammation/drug therapy , Iron/therapeutic use , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , Mammals , Pyridones/therapeutic use
17.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
18.
J Food Biochem ; 46(10): e14345, 2022 10.
Article in English | MEDLINE | ID: covidwho-1956770

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti-cancer, anti-inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF-κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID-19 through its anti-inflammatory and anti-oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID-19 patients. PRACTICAL APPLICATIONS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented untold hardship to both developing and developed countries. The inflammation, cytokine storm, and oxidative stress have an important role in the pathogenesis of this infection. In this regard, finding plant-derived compounds with anti-inflammatory and anti-oxidative effects would be very beneficial in reducing the mortality induced by this infection. Genistein an isoflavone derived from soy-rich products possesses versatile biological activities. It has potent anti-inflammatory and anti-oxidative and immunomodulatory effects. Furthermore, this compound may prevent viral entry to host cells and reduce SARS-CoV2-induced lung injury. Therefore, we suggest further studies on the effects of genistein on SARS-Cov-2 infection.


Subject(s)
COVID-19 , AMP-Activated Protein Kinases , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , COVID-19/drug therapy , Genistein/pharmacology , Humans , Inflammation/drug therapy , NF-E2-Related Factor 2 , NF-kappa B , PPAR gamma , Phosphatidylinositol 3-Kinases , Phytochemicals/pharmacology , Phytoestrogens/pharmacology , Proto-Oncogene Proteins c-akt , RNA, Viral , SARS-CoV-2 , TOR Serine-Threonine Kinases
19.
Sci Transl Med ; 14(654): eabo2652, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1949955

ABSTRACT

Hyperinflammation triggered by SARS-CoV-2 is a major cause of disease severity, with activated macrophages implicated in this response. OP-101, a hydroxyl-polyamidoamine dendrimer-N-acetylcysteine conjugate that specifically targets activated macrophages, improves outcomes in preclinical models of systemic inflammation and neuroinflammation. In this multicenter, randomized, double-blind, placebo-controlled, adaptive phase 2a trial, we evaluated safety and preliminary efficacy of OP-101 in patients with severe COVID-19. Twenty-four patients classified as having severe COVID-19 with a baseline World Health Organization seven-point ordinal scale of ≥5 were randomized to receive a single intravenous dose of placebo (n = 7 patients) or OP-101 at 2 (n = 6), 4 (n = 6), or 8 mg/kg (n = 5 patients). All study participants received standard of care, including corticosteroids. OP-101 at 4 mg/kg was better than placebo at decreasing inflammatory markers; OP-101 at 4 and 8 mg/kg was better than placebo at reducing neurological injury markers, (neurofilament light chain and glial fibrillary acidic protein). Risk for the composite outcome of mechanical ventilation or death at 30 and 60 days after treatment was 71% (95% CI: 29%, 96%) for placebo and 18% (95% CI: 4%, 43%; P = 0.021) for the pooled OP-101 treatment arms. At 60 days, 3 of 7 patients given placebo and 14 of 17 OP-101-treated patients were surviving. No drug-related adverse events were reported. These data show that OP-101 was well tolerated and may have potential to treat systemic inflammation and neuronal injury, reducing morbidity and mortality in hospitalized patients with severe COVID-19.


Subject(s)
COVID-19 , Dendrimers , COVID-19/drug therapy , Dendrimers/therapeutic use , Double-Blind Method , Humans , Inflammation/drug therapy , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
20.
Ann Palliat Med ; 11(6): 2085-2092, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1934828

ABSTRACT

BACKGROUND: Novel coronavirus pneumonia is a novel kind of highly contagious disease without any specific drugs. Considering the successful experience of antiviral therapy combined with glucocorticoids (GCs) in severe acute respiratory syndrome, this study was designed to evaluate the clinical efficacy of GCs in treating patients with coronavirus disease 2019 (COVID-19). METHODS: A cohort of 42 patients with COVID-19 admitted to The First Hospital of Jiaxing from January 4, 2020, to February 16, 2020, were included and grouped into a test group (n=20) and control group (n=22) based on their therapeutic regimens. There were no significant differences in baseline characteristics between patients in the two groups. Conventional treatment (antiviral therapy) was given to patients in both groups, while an additional hormone drug (GCs) was used in patients in the test group. Indices including body temperature, blood routine indices [white blood cell (WBC), lymphocyte, monocyte, and C-reactive protein (CRP)], blood biochemical indices [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)], and complications were recorded during the treatment. Time to achieve negative virus nucleic acid (nCoV-RNA) testing, and hospital stays were also observed and compared between the two groups. RESULTS: All included patients completed the trial. After treatment, superior therapeutic efficacy was achieved in patients in the test group, with body temperature dropping more significantly with a much shorter recovery time compared to the control group (P=0.0412). Simultaneously, the percentage of patients with abnormal blood routine indices (WBC), monocyte, and (CRP) in the test group was reduced more sharply, while no noticeable difference was observed in the number of patients who developed abnormal blood biochemical indices during treatment between the two groups. Additionally, a shorter duration of hospital stays was found in the test group relative to the control group (14.84±8.76 vs. 18.25±7.42 days, P>0.05). Patients who received GCs had a shorter recovery time for body temperature and inflammation. CONCLUSIONS: Hormonotherapy with GCs can accelerate the recovery time for body temperature as well as inflammation in patients with COVID-19. It deserves promotion and application in the clinical treatment of coronavirus disease as a form of adjuvant medicine. The ongoing focus of research is on long-term adverse events in GCs.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , C-Reactive Protein , COVID-19/drug therapy , Glucocorticoids/therapeutic use , Humans , Inflammation/drug therapy , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL