Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Zool Res ; 43(3): 457-468, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1836354


COVID-19 is an immune-mediated inflammatory disease caused by SARS-CoV-2 infection, the combination of anti-inflammatory and antiviral therapy is predicted to provide clinical benefits. We recently demonstrated that mast cells (MCs) are an essential mediator of SARS-CoV-2-initiated hyperinflammation. We also showed that spike protein-induced MC degranulation initiates alveolar epithelial inflammation for barrier disruption and suggested an off-label use of antihistamines as MC stabilizers to block degranulation and consequently suppress inflammation and prevent lung injury. In this study, we emphasized the essential role of MCs in SARS-CoV-2-induced lung lesions in vivo, and demonstrated the benefits of co-administration of antihistamines and antiviral drug remdesivir in SARS-CoV-2-infected mice. Specifically, SARS-CoV-2 spike protein-induced MC degranulation resulted in alveolar-capillary injury, while pretreatment of pulmonary microvascular endothelial cells with antihistamines prevented adhesion junction disruption; predictably, the combination of antiviral drug remdesivir with the antihistamine loratadine, a histamine receptor 1 (HR1) antagonist, dampened viral replication and inflammation, thereby greatly reducing lung injury. Our findings emphasize the crucial role of MCs in SARS-CoV-2-induced inflammation and lung injury and provide a feasible combination antiviral and anti-inflammatory therapy for COVID-19 treatment.

COVID-19 , Lung Injury , Rodent Diseases , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/veterinary , Endothelial Cells , Histamine Antagonists/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Inflammation/veterinary , Lung Injury/drug therapy , Lung Injury/veterinary , Mice , Rodent Diseases/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
PLoS Pathog ; 17(5): e1009229, 2021 05.
Article in English | MEDLINE | ID: covidwho-1239922


While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.

Camelids, New World , Coronavirus Infections/immunology , Interferon Type I/metabolism , Interferons/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Camelids, New World/immunology , Camelids, New World/metabolism , Camelids, New World/virology , Chlorocebus aethiops , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Resistance/drug effects , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Immunity, Innate/physiology , Inflammation/immunology , Inflammation/metabolism , Inflammation/veterinary , Inflammation/virology , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Interferons/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
Zool Res ; 41(5): 503-516, 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-709116


As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques ( Macaca mulatta) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b + and CD8 + cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b + cells, and persistent infiltration of CD8 + cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.

Aging/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Macaca mulatta/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Age Factors , Aging/metabolism , Animals , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Cytokines/metabolism , Inflammation/immunology , Inflammation/veterinary , Inflammation/virology , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta/virology , Monkey Diseases/immunology , Monkey Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/veterinary , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/veterinary , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Viral Load/immunology , Viral Load/veterinary , Virus Replication/immunology