Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Nature ; 606(7914): 576-584, 2022 06.
Article in English | MEDLINE | ID: covidwho-1921629

ABSTRACT

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Subject(s)
COVID-19 , Inflammation , Monocytes , Receptors, IgG , SARS-CoV-2 , COVID-19/virology , Caspase 1/metabolism , DNA-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/virology , Monocytes/metabolism , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Receptors, IgG/metabolism
2.
Aging Cell ; 21(6): e13646, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1883166

ABSTRACT

Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID-19 infection. The pathogenesis of COVID-19-related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS-CoV-2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF-α + IFN-γ or a cocktail of TNF-α + IFN-γ + IL-6, increased expression of ACE2/DPP4, accentuated the pro-inflammatory senescence-associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence-like state. IL-6 by itself failed to induce substantial effects on viral entry receptors or SASP-related genes, while synergy between TNF-α and IFN-γ initiated a positive feedback loop via hyper-activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper-inflammation, normalized SARS-CoV-2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine-mediated viral entry receptor activation and links with senescence and hyper-inflammation.


Subject(s)
COVID-19 , Interferon-gamma , SARS-CoV-2 , Tumor Necrosis Factor-alpha , COVID-19/drug therapy , COVID-19/virology , Cytokines/immunology , Drug Synergism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/drug therapy , Inflammation/virology , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , STAT1 Transcription Factor/biosynthesis , STAT1 Transcription Factor/immunology , Tumor Necrosis Factor-alpha/pharmacology
3.
J Biol Chem ; 298(3): 101695, 2022 03.
Article in English | MEDLINE | ID: covidwho-1851422

ABSTRACT

Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5ß1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1ß, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5ß1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1ß, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5ß1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5ß1 as a promising target for treating vascular inflammation in COVID-19.


Subject(s)
COVID-19 , Inflammation , Integrin alpha5beta1 , NF-kappa B , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Integrin alpha5beta1/metabolism , Interleukin-6/metabolism , NF-kappa B/metabolism , Oligopeptides , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1760640

ABSTRACT

Tuberculosis is still an important medical and social problem. In recent years, great strides have been made in the fight against M. tuberculosis, especially in the Russian Federation. However, the emergence of a new coronavirus infection (COVID-19) has led to the long-term isolation of the population on the one hand and to the relevance of using personal protective equipment on the other. Our knowledge regarding SARS-CoV-2-induced inflammation and tissue destruction is rapidly expanding, while our understanding of the pathology of human pulmonary tuberculosis gained through more the 100 years of research is still limited. This paper reviews the main molecular and cellular differences and similarities caused by M. tuberculosis and SARS-CoV-2 infections, as well as their critical immunological and pathomorphological features. Immune suppression caused by the SARS-CoV-2 virus may result in certain difficulties in the diagnosis and treatment of tuberculosis. Furthermore, long-term lymphopenia, hyperinflammation, lung tissue injury and imbalance in CD4+ T cell subsets associated with COVID-19 could propagate M. tuberculosis infection and disease progression.


Subject(s)
COVID-19/etiology , Tuberculosis/diagnosis , Tuberculosis/etiology , COVID-19/immunology , Coinfection , Host-Pathogen Interactions , Humans , Inflammation/microbiology , Inflammation/pathology , Inflammation/virology , Lymphopenia/microbiology , Lymphopenia/virology , Mycobacterium tuberculosis/pathogenicity , SARS-CoV-2/pathogenicity
5.
Front Cell Infect Microbiol ; 12: 807332, 2022.
Article in English | MEDLINE | ID: covidwho-1753361

ABSTRACT

In the early stage of coronavirus disease 2019 (COVID-19), most cases are identified as mild or moderate illnesses. Approximately 20% of hospitalised patients become severe or critical at the middle or late stage of the disease. The predictors and risk factors for prognosis in those with mild or moderate disease remain to be determined. Of 694 patients with COVID-19, 231 patients with mild or moderate disease, who were hospitalised at 10 hospitals in Wenzhou and nearby counties in China, were enrolled in this retrospective study from 17 January to 20 March 2020. The outcomes of these patients included progression from mild/moderate illness to severe or critical conditions. Among the 231 patients, 49 (21.2%) had a poor prognosis in the hospital. Multivariate logistic regression analysis showed that higher inflammation/coagulopathy/immunology responsive index (ICIRI=[c-reactive protein × fibrinogen × D-dimer]/CD8 T cell count) on admission (OR=345.151, 95% CI=23.014-5176.318) was associated with increased odds ratios for poor prognosis. The area under the receiver operating characteristic curve for ICIRI predicting severe and critical condition progression was 0.65 (95% CI=0.519-0.782) and 0.80 (95% CI=0.647-0.954), with cut-off values of 870.83 and 535.44, respectively. Conversely, age, sex, comorbidity, neutrophil/lymphocyte ratio, CD8 T cell count, and c-reactive protein, fibrinogen, and D-dimer levels alone at admission were not good predictors of poor prognosis in patients with mild or moderate COVID-19. At admission, a novel index, ICIRI, tends to be the most promising predictor of COVID-19 progression from mild or moderate illness to severe or critical conditions.


Subject(s)
Blood Coagulation Disorders/virology , COVID-19 , Inflammation/virology , C-Reactive Protein , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , Fibrin Fibrinogen Degradation Products , Fibrinogen , Humans , ROC Curve , Retrospective Studies
6.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1744920

ABSTRACT

Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome (ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay between the virus and primary human monocyte-derived macrophages (MDM). MDM were stimulated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human seasonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquantitatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-ß induction, which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings concur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages.


Subject(s)
Inflammation/virology , Macrophages/immunology , Macrophages/virology , SARS-CoV-2/immunology , Virus Replication/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytokines/analysis , Cytokines/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Interferon-alpha/pharmacology , Macrophages/drug effects , Male , SARS-CoV-2/genetics , SARS-CoV-2/physiology
7.
Front Immunol ; 13: 820131, 2022.
Article in English | MEDLINE | ID: covidwho-1731776

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


Subject(s)
COVID-19/drug therapy , Down-Regulation/drug effects , Inflammation/drug therapy , Membrane Microdomains/drug effects , SARS-CoV-2/pathogenicity , Simvastatin/pharmacology , Animals , COVID-19/virology , Disease Models, Animal , Humans , Inflammation/virology , Lung/virology , Mice , Mice, Transgenic , Virus Replication/drug effects
8.
Front Immunol ; 13: 811430, 2022.
Article in English | MEDLINE | ID: covidwho-1731772

ABSTRACT

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Glucocorticoids/metabolism , Immunity, Innate/drug effects , Inflammation/drug therapy , Receptors, Androgen/metabolism , Virus Internalization/drug effects , Animals , COVID-19/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/virology , Lung/virology , Male , Mesocricetus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Load/drug effects
9.
Pediatr Infect Dis J ; 40(7): e274-e276, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1700567

ABSTRACT

Underlying mechanisms on the association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurologic complications are still poorly understood. Cases of Guillain-Barré Syndrome (GBS) have been linked to the SARS-CoV-2 infection as the result of dysregulated immune response with damage in neuronal tissues. In the current report, we present the first pediatric case of GBS with detection of SARS-CoV-2 in the cerebrospinal fluid (CFS). This unique case of COVID-19-associated GBS with detection of SARS-CoV-2 RNA in the CSF indicates direct viral involvement inducing peripheral nerve inflammation.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Guillain-Barre Syndrome/complications , RNA, Viral/cerebrospinal fluid , Adolescent , COVID-19/complications , Cauda Equina/diagnostic imaging , Cauda Equina/pathology , Cauda Equina/virology , Female , Guillain-Barre Syndrome/virology , Humans , Inflammation/virology , Magnetic Resonance Imaging , SARS-CoV-2/isolation & purification
10.
Lab Chip ; 22(6): 1171-1186, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1684131

ABSTRACT

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.


Subject(s)
Angiopoietin-1 , COVID-19 , Endothelium, Vascular , Inflammation , SARS-CoV-2 , COVID-19/drug therapy , COVID-19/virology , Endothelial Cells/immunology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/virology , Humans , Immunity, Innate , Inflammation/drug therapy , Inflammation/virology , Lab-On-A-Chip Devices , Leukocytes, Mononuclear
11.
Int Immunopharmacol ; 104: 108502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1641351

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. AIM: To evaluate the role of oxidative stress-related molecules in COVID-19. METHOD: An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. RESULTS: We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. CONCLUSION: SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.


Subject(s)
COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Child , Cyclooxygenase 2/blood , Cyclooxygenase 2/metabolism , Female , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/metabolism , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Healthy Volunteers , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Inflammation/virology , Male , Middle Aged , Oxidative Stress/immunology , Receptor for Advanced Glycation End Products/blood , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/immunology , Severity of Illness Index , Up-Regulation/immunology , Young Adult
12.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: covidwho-1637376

ABSTRACT

The spike protein of SARS-CoV-2 triggers macrophages and epithelial cells to produce excess levels of pro-inflammatory molecules, which can do more harm than good.


Subject(s)
COVID-19/virology , Cytokines/metabolism , Inflammation/virology , SARS-CoV-2/pathogenicity , Humans , Macrophages/metabolism , Spike Glycoprotein, Coronavirus/metabolism
13.
PLoS Pathog ; 18(1): e1010171, 2022 01.
Article in English | MEDLINE | ID: covidwho-1622378

ABSTRACT

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Lung/virology , SARS-CoV-2/physiology , Virus Internalization , Adult , Animals , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Inflammation/pathology , Inflammation/therapy , Inflammation/virology , Lung/pathology , SARS-CoV-2/drug effects , Vero Cells , Virus Internalization/drug effects
14.
Sci Rep ; 12(1): 385, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1617004

ABSTRACT

The immune response after SARS-CoV-2 vaccine administration appears to be characterized by high inter-individual variation, even in SARS-CoV-2 positive subjects, who could have experienced different post-infection, unresolved conditions. We monitored anti-SARS-CoV-2 IgG levels and kinetics along with circulating biomarkers in a cohort of 175 healthcare workers during early immunization with COVID-19 mRNA-LNP BNT162b2 vaccine, to identify the associated factors. Subjects with a previous SARS-CoV-2 infection were characterized by higher BMI and CRP levels and lower neutrophil count with respect to naïve subjects. Baseline IgG levels resulted associated with CRP independently on BMI and inflammatory diseases. Among 137 subjects undergoing vaccination and monitored after the first and the second dose, three kinetic patterns were identified. The pattern showing a rapid growth was characterized by higher IgG levels at baseline and higher CRP and MCHC levels than negative subjects. Subjects previously exposed to SARS-CoV-2 showed higher levels of CRP, suggesting persistence of unresolved inflammation. These levels are the main determinant of IgG levels at baseline and characterized subjects belonging to the best performing, post-vaccine antibody kinetic pattern.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Health Personnel/statistics & numerical data , Inflammation/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Biomarkers/blood , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Inflammation/virology , Kinetics , Logistic Models , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/physiology , Vaccination/methods , Vaccination/statistics & numerical data
15.
Curr Med Res Opin ; 38(3): 357-364, 2022 03.
Article in English | MEDLINE | ID: covidwho-1612282

ABSTRACT

Sodium-glucose co-transporter-2 (SGLT-2) inhibitors are antidiabetic drugs with numerous pleiotropic and positive clinical effects, particularly regarding a reno-cardiovascular protective effect. More recent studies, including from our laboratory, have highlighted some novel anti-inflammatory activity of SGLT-2 inhibitors. This may confer a theoretical advantage in mitigating excessive cytokine production and inflammatory response associated with serious COVID-19 infection. Specifically, earlier research has demonstrated that SGLT-2 inhibitors are associated with a notable decrease in inflammatory indicators, for example, C-reactive protein, ferritin, and interleukin-6. Furthermore, SGLT-2 inhibitors exhibit a favourable impact on the vascular endothelium function; this could pertinence the prophylaxis of the thrombotic issues that arise in SARS-CoV-2. This review provides an overview of the COVID-19 indirect immune response mechanisms impacting the cardiovascular system and the possible effect of SGLT-2 inhibitors on the management of COVID-19.


Subject(s)
COVID-19 , Inflammation , Sodium-Glucose Transporter 2 Inhibitors , COVID-19/drug therapy , Glucose , Humans , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Inflammation/virology , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
16.
J Neuroinflammation ; 19(1): 8, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613238

ABSTRACT

BACKGROUND: The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS: CD-1 mice received an intraperitoneal injection of R848 (200 µg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 µL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS: R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS: Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.


Subject(s)
Benzamidines , Guanidines , Inflammation/drug therapy , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors , Toll-Like Receptor 7/immunology , Virus Diseases/drug therapy , Animals , Benzamidines/pharmacology , Benzamidines/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Guanidines/pharmacology , Guanidines/therapeutic use , Illness Behavior/drug effects , Imidazoles/administration & dosage , Imidazoles/immunology , Inflammation/metabolism , Inflammation/virology , Male , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Toll-Like Receptor 7/agonists , Virus Diseases/metabolism , Virus Diseases/virology
17.
Elife ; 102021 12 06.
Article in English | MEDLINE | ID: covidwho-1594792

ABSTRACT

The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here, we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines, including IL-6, IL-1ß, TNFα, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and nucleocapsid (N) proteins. When stimulated with extracellular S protein, human and mouse lung epithelial cells also produced inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly were non-inflammatory, but elicited an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-κB pathway in a MyD88-dependent manner. Further, such an activation of the NF-κB pathway was abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein-induced IL-6, TNF-α, and IL-1ß in wild-type, but not Tlr2-deficient mice. Notably, upon recognition of S protein, TLR2 dimerizes with TLR1 or TLR6 to activate the NF-κB pathway. Taken together, these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.


Subject(s)
Inflammation/virology , NF-kappa B/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 2/genetics , A549 Cells , Animals , HEK293 Cells , Humans , Mice , Signal Transduction , Toll-Like Receptor 2/metabolism
18.
J Clin Lab Anal ; 36(1): e24162, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1555764

ABSTRACT

OBJECTIVE: Most patients infected with the novel coronavirus (SARS-CoV-2), as the causative agent of COVID-19 disease, show mild symptoms, but some of them develop severe illness. The purpose of this study was to analyze the blood markers of COVID-19 patients and to investigate the correlation between serum inflammatory cytokines and the disease severity. METHODS: In this prospective cross-sectional study, 50 patients with COVID-19 and 20 patients without COVID-19 were enrolled. According to ICU admission criteria, patients were divided into two groups of non-severe and severe. Differences in the serum levels of C-reactive protein (CRP), IL-6, and TNF-α, as well as erythrocyte sedimentation rate (ESR), lymphocytes (LYM) count, and neutrophils (NEU) count between the two groups were determined and analyzed. RESULTS: Out of the 50 patients with COVID-19, 14 were diagnosed as severe cases. There was no significant difference between the two groups of COVID-19 patients in terms of gender and age. Blood tests of COVID-19 patients showed a significant decrease and increase in NEU and LYM counts, respectively. There were significant differences in the serum levels of IL-6, TNF-α, and CRP between the severe and non-severe groups, which were higher in the severe group. Also, there was a significant correlation between the disease severity and CRP with ESR (r = 0.79), CRP with IL-6 (r = 0.74), LYM with NEU (r = -0.97), and ESR with TNF-α (r = 0.7). CONCLUSION: The findings of this study, as the first study in Iran, suggest that the levels of IL-6, TNF-α, ESR, and CRP could be used to predict the severity of COVID-19 disease.


Subject(s)
Biomarkers/blood , COVID-19/etiology , Inflammation/blood , Adult , Aged , Blood Sedimentation , C-Reactive Protein/analysis , COVID-19/blood , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Inflammation/virology , Interleukin-6/blood , Lymphocyte Count , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Young Adult
19.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: covidwho-1547664

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
20.
mSphere ; 6(5): e0075221, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1526451

ABSTRACT

During the progression of coronavirus disease 2019 (COVID-19), immune response and inflammation reactions are dynamic events that develop rapidly and are associated with the severity of disease. Here, we aimed to develop a predictive model based on the immune and inflammatory response to discriminate patients with severe COVID-19. COVID-19 patients were enrolled, and their demographic and immune inflammatory reaction indicators were collected and analyzed. Logistic regression analysis was performed to identify the independent predictors, which were further used to construct a predictive model. The predictive performance of the model was evaluated by receiver operating characteristic curve, and optimal diagnostic threshold was calculated; these were further validated by 5-fold cross-validation and external validation. We screened three key indicators, including neutrophils, eosinophils, and IgA, for predicting severe COVID-19 and obtained a combined neutrophil, eosinophil, and IgA ratio (NEAR) model (NEU [109/liter] - 150×EOS [109/liter] + 3×IgA [g/liter]). NEAR achieved an area under the curve (AUC) of 0.961, and when a threshold of 9 was applied, the sensitivity and specificity of the predicting model were 100% and 88.89%, respectively. Thus, NEAR is an effective index for predicting the severity of COVID-19 and can be used as a powerful tool for clinicians to make better clinical decisions. IMPORTANCE The immune inflammatory response changes rapidly with the progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is responsible for clearance of the virus and further recovery from the infection. However, the intensified immune and inflammatory response in the development of the disease may lead to more serious and fatal consequences, which indicates that immune indicators have the potential to predict serious cases. Here, we identified both eosinophils and serum IgA as prognostic markers of COVID-19, which sheds light on new research directions and is worthy of further research in the scientific research field as well as clinical application. In this study, the combination of NEU count, EOS count, and IgA level was included in a new predictive model of the severity of COVID-19, which can be used as a powerful tool for better clinical decision-making.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Clinical Decision Rules , Severity of Illness Index , Adult , Aged , Biomarkers/blood , COVID-19/blood , Clinical Decision-Making/methods , Disease Progression , Eosinophils/metabolism , Female , Humans , Immunoglobulin A/blood , Inflammation/blood , Inflammation/diagnosis , Inflammation/virology , Logistic Models , Male , Middle Aged , Neutrophils/metabolism , Predictive Value of Tests , Prognosis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL