Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Virol ; 96(5): e0179121, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799229

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are cocirculating in the human population. However, only a few cases of viral coinfection with these two viruses have been documented in humans with some people having severe disease and others mild disease. To examine this phenomenon, ferrets were coinfected with SARS-CoV-2 and human seasonal influenza A viruses (IAVs; H1N1 or H3N2) and were compared to animals that received each virus alone. Ferrets were either immunologically naive to both viruses or vaccinated with the 2019 to 2020 split-inactivated influenza virus vaccine. Coinfected naive ferrets lost significantly more body weight than ferrets infected with each virus alone and had more severe inflammation in both the nose and lungs compared to that of ferrets that were single infected with each virus. Coinfected, naive animals had predominantly higher IAV titers than SARS-CoV-2 titers, and IAVs were efficiently transmitted by direct contact to the cohoused ferrets. Comparatively, SARS-CoV-2 failed to transmit to the ferrets that cohoused with coinfected ferrets by direct contact. Moreover, vaccination significantly reduced IAV titers and shortened the viral shedding but did not completely block direct contact transmission of the influenza virus. Notably, vaccination significantly ameliorated influenza-associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 coinfection, suggesting that seasonal influenza virus vaccination is pivotal to prevent severe disease induced by IAV and SARS-CoV-2 coinfection during the COVID-19 pandemic. IMPORTANCE Influenza A viruses cause severe morbidity and mortality during each influenza virus season. The emergence of SARS-CoV-2 infection in the human population offers the opportunity to potential coinfections of both viruses. The development of useful animal models to assess the pathogenesis, transmission, and viral evolution of these viruses as they coinfect a host is of critical importance for the development of vaccines and therapeutics. The ability to prevent the most severe effects of viral coinfections can be studied using effect coinfection ferret models described in this report.


Subject(s)
Antibodies, Viral/blood , COVID-19/prevention & control , Coinfection/prevention & control , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , COVID-19/immunology , Female , Ferrets/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , Vaccination , Virus Shedding
2.
Microbiol Spectr ; 10(1): e0165521, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673364

ABSTRACT

Although lessons have been learned from previous severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, the rapid evolution of the viruses means that future outbreaks of a much larger scale are possible, as shown by the current coronavirus disease 2019 (COVID-19) outbreak. Therefore, it is necessary to better understand the evolution of coronaviruses as well as viruses in general. This study reports a comparative analysis of the amino acid usage within several key viral families and genera that are prone to triggering outbreaks, including coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], SARS-CoV, MERS-CoV, human coronavirus-HKU1 [HCoV-HKU1], HCoV-OC43, HCoV-NL63, and HCoV-229E), influenza A (H1N1 and H3N2), flavivirus (dengue virus serotypes 1 to 4 and Zika) and ebolavirus (Zaire, Sudan, and Bundibugyo ebolavirus). Our analysis reveals that the distribution of amino acid usage in the viral genome is constrained to follow a linear order, and the distribution remains closely related to the viral species within the family or genus. This constraint can be adapted to predict viral mutations and future variants of concern. By studying previous SARS and MERS outbreaks, we have adapted this naturally occurring pattern to determine that although pangolin plays a role in the outbreak of COVID-19, it may not be the sole agent as an intermediate animal. In addition to this study, our findings contribute to the understanding of viral mutations for subsequent development of vaccines and toward developing a model to determine the source of the outbreak. IMPORTANCE This study reports a comparative analysis of amino acid usage within several key viral genera that are prone to triggering outbreaks. Interestingly, there is evidence that the amino acid usage within the viral genomes is not random but in a linear order.


Subject(s)
Coronavirus/genetics , Ebolavirus/genetics , Evolution, Molecular , Flavivirus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Codon , Coronavirus/classification , Genome, Viral , Humans , Linear Models , Mutation , SARS-CoV-2/genetics , Virus Diseases/virology
3.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
4.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1577032

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
5.
Int J Infect Dis ; 116: 11-13, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1559405

ABSTRACT

OBJECTIVE: We quantify the impact of COVID-19-related control measures on the spread of human influenza virus H1N1 and H3N2. METHODS: We analyzed case numbers to estimate the end of the 2019-2020 influenza season and compared it with the median of the previous 9 seasons. In addition, we used influenza molecular data to compare within-region and between-region genetic diversity and effective population size from 2019 to 2020. Finally, we analyzed personal behavior and policy stringency data for each region. RESULTS: The 2019-2020 influenza season ended earlier than the median of the previous 9 seasons in all regions. For H1N1 and H3N2, there was an increase in between-region genetic diversity in most pairs of regions between 2019 and 2020. There was a decrease in within-region genetic diversity for 12 of 14 regions for H1N1 and 9 of 12 regions for H3N2. There was a decrease in effective population size for 10 of 13 regions for H1N1 and 3 of 7 regions for H3N2. CONCLUSIONS: We found consistent evidence of a decrease in influenza incidence after the introduction of preventive measures due to COVID-19 emergence.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2/genetics , Seasons
6.
PLoS One ; 16(12): e0260947, 2021.
Article in English | MEDLINE | ID: covidwho-1556896

ABSTRACT

BACKGROUND: On 9th January 2020, China CDC reported a novel coronavirus (later named SARS-CoV-2) as the causative agent of the coronavirus disease 2019 (COVID-19). Identifying the first appearance of virus is of epidemiological importance to tracking and mapping the spread of SARS-CoV-2 in a country. We therefore conducted a retrospective observational study to detect SARS-CoV-2 in oropharyngeal samples collected from hospitalized patients with a Severe Acute Respiratory Infection (SARI) enrolled in the DRIVE (Development of Robust and Innovative Vaccine Effectiveness) study in five Italian hospitals (CIRI-IT BIVE hospitals network) (1st November 2019 - 29th February 2020). OBJECTIVES: To acquire new information on the real trend in SARS-CoV-2 infection during pandemic phase I and to determine the possible early appearance of the virus in Italy. MATERIALS AND METHODS: Samples were tested for influenza [RT-PCR assay (A/H1N1, A/H3N2, B/Yam, B/Vic)] in accordance with the DRIVE study protocol. Subsequently, swabs underwent molecular testing for SARS-COV-2. [one-step real-time multiplex retro-transcription (RT) PCR]. RESULTS: In the 1683 samples collected, no evidence of SARS-CoV-2 was found. Moreover, 28.3% (477/1683) of swabs were positive for influenza viruses, the majority being type A (358 vs 119 type B). A/H3N2 was predominant among influenza A viruses (55%); among influenza B viruses, B/Victoria was prevalent. The highest influenza incidence rate was reported in patients aged 0-17 years (40.3%) followed by those aged 18-64 years (24.4%) and ≥65 years (14.8%). CONCLUSIONS: In Italy, some studies have shown the early circulation of SARS-CoV-2 in northern regions, those most severely affected during phase I of the pandemic. In central and southern regions, by contrast no early circulation of the virus was registered. These results are in line with ours. These findings highlight the need to continue to carry out retrospective studies, in order to understand the epidemiology of the novel coronavirus, to better identify the clinical characteristics of COVID-19 in comparison with other acute respiratory illnesses (ARI), and to evaluate the real burden of COVID-19 on the healthcare system.


Subject(s)
Influenza, Human/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , Female , Hospitals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/pathology , Influenza, Human/virology , Italy/epidemiology , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/metabolism , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Young Adult
7.
PLoS One ; 16(11): e0258798, 2021.
Article in English | MEDLINE | ID: covidwho-1515477

ABSTRACT

Two main mechanisms contribute to the continuous evolution of influenza viruses: accumulation of mutations in the hemagglutinin and neuraminidase genes (antigenic drift) and genetic re-assortments (antigenic shift). Epidemiological surveillance is important in identifying new genetic variants of influenza viruses with potentially increased pathogenicity and transmissibility. In order to characterize the 2019/20 influenza epidemic in Romania, 1042 respiratory samples were collected from consecutive patients hospitalized with acute respiratory infections in the National Institute for Infectious Diseases "Prof. Dr. Matei Balș", Bucharest Romania and tested for influenza A virus, influenza B virus and respiratory syncytial virus (RSV) by real-time PCR. Out of them, 516 cases were positive for influenza, with relatively equal distribution of influenza A and B. Two patients had influenza A and B co-infection and 8 patients had influenza-RSV co-infection. The most severe cases, requiring supplemental oxygen administration or intensive care, and the most deaths were reported in patients aged 65 years and over. Subtyping showed the predominance of A(H3N2) compared to A(H1N1)pdm09 pdm09 (60.4% and 39.6% of all subtyped influenza A isolates, respectively), and the circulation of Victoria B lineage only. Influenza B started to circulate first (week 47/2019), with influenza A appearing slightly later (week 50/2019), followed by continued co-circulation of A and B viruses throughout the season. Sixty-eight samples, selected to cover the entire influenza season and all circulating viral types, were analysed by next generation sequencing (NGS). All A(H1N1)pdm09 sequences identified during this season in Romania were clustered in the 6b1.A clade (sub-clades: 6b1.A.183P -5a and 6b1.A.187A). For most A(H1N1)pdm09 sequences, the dominant epitope was Sb (pepitope = 0.25), reducing the vaccine efficacy by approximately 60%. According to phylogenetic analysis, influenza A(H3N2) strains circulating in this season belonged predominantly to clade 3C.3A, with only few sequences in clade 3C.2A1b. These 3C.2A1b sequences, two of which belonged to vaccinated patients, harbored mutations in antigenic sites leading to potential reduction of vaccine efficacy. Phylogenetic analysis of influenza B, lineage Victoria, sequences showed that the circulating strains belonged to clade V1A3. As compared to the other viral types, fewer mutations were observed in B/Victoria strains, with limited impact on vaccine efficiency based on estimations.


Subject(s)
Epidemics , Hospitalization , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/history , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/history , Respiratory Syncytial Viruses/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Coinfection , Female , History, 21st Century , Humans , Infant , Infant, Newborn , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Middle Aged , Phylogeny , RNA, Viral/genetics , Respiratory Syncytial Virus Infections/virology , Romania/epidemiology , Young Adult
8.
Influenza Other Respir Viruses ; 14(5): 530-540, 2020 09.
Article in English | MEDLINE | ID: covidwho-1452864

ABSTRACT

BACKGROUND: Influenza is an acute infection affecting all age groups; however, elderly patients are at an increased risk. We aim to describe the clinical characteristics and the circulation of influenza virus types in elderly patients admitted for severe acute respiratory infection (SARI) to a tertiary care hospital in Bucharest, Romania, part of the I-MOVE+ hospital network. METHODS: We conducted an active surveillance study at the National Institute for Infectious Diseases "Prof. Dr Matei Balș," Bucharest, Romania, during three consecutive influenza seasons: 2015/16, 2016/17, and 2017/18. All patients aged 65 and older admitted to our hospital for SARI were tested for influenza by PCR. RESULTS: A total of 349 eligible patients were tested during the study period, and 149 (42.7%) were confirmed with influenza. Most patients, 321 (92.5%) presented at least one underlying condition at the time of hospital admission, the most frequent being cardiovascular disease, 270 (78.3%). The main influenza viral subtype circulating in 2015/16 was A(H1N1)pdm09, followed by A(H3N2) in 2016/17 and B influenza in 2017/18. Case fatality was highest in the 2015/16 season (3.7%), 0% in 2016/17, and 1.0% in 2017/18. Vaccination coverage in elderly patients with SARI from our study population was 22 (6.3%) over the three seasons. CONCLUSIONS: Our study has highlighted a high burden of comorbidities in elderly patients presenting with SARI during winter season in Romania. The influenza vaccine coverage rate needs to be substantially increased in the elderly population, through targeted interventions.


Subject(s)
Influenza, Human/epidemiology , Sentinel Surveillance , Age Factors , Aged , Aged, 80 and over , Female , Hospitalization/statistics & numerical data , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/genetics , Influenza B virus/immunology , Influenza Vaccines/immunology , Male , Romania/epidemiology , Seasons , Tertiary Healthcare
9.
J Virol Methods ; 297: 114250, 2021 11.
Article in English | MEDLINE | ID: covidwho-1461648

ABSTRACT

Recent publications have highlighted the emergence of mutations in the M1 gene of both influenza A H1N1pdm09 and H3N2 subtypes affecting the performance of commercial RT-PCR assays. Respiratory samples from the 2018/2019 season positive by our in-house RT-PCR for influenza A were analysed for the prevalence and impact of any M1 gene mutations. Sequence information was used to re-design primers for our routine assay and their performance assessed. Forty-five samples, consisting of 11 H1N1pdm09 and 34 H3N2 subtypes, together with the NIBSC H1N1 control were sequenced. All samples displayed the core mutations for H1N1 M1(C154T; G174A and G238A) and for H3N2 M1(C153T; C163T and G189T); three of the H1N1pdm09 viruses also showed a small number of point mutations. None of the mutations appeared to affect either the sensitivity or efficiency of the RT-PCR when compared to the re-designed primers. Although the mutations we found agreed with those in the publications cited we did not encounter any problems with our routine diagnostic assay and no improvements were found when the primers were modified to suit those mutations. However, it is likely that the influenza A virus M1 gene will accumulate further mutations that could impact RT-PCR assays and, therefore, it would be prudent to implement routine sequencing of samples during the influenza seasons to ensure no loss in assay performance.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , London/epidemiology , Seasons
10.
J Virol ; 95(24): e0126721, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1443354

ABSTRACT

Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.


Subject(s)
COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/complications , Influenza, Human/immunology , Cambodia/epidemiology , Disease Outbreaks , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Laos , Likelihood Functions , Phylogeny , SARS-CoV-2 , Vietnam
11.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
12.
J Med Virol ; 93(4): 2396-2405, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217389

ABSTRACT

SARS-CoV-2 triggers a dysregulated innate immune system activation. As the mevalonate pathway (MVP) prevents the activation of inflammasomes and cytokine release and regulates endosomal transport, compromised signaling could be associated with the pathobiology of COVID-19. Prior transcriptomic studies of host cells in response to SARS-CoV-2 infection have not reported to date the effects of SARS-CoV-2 on the MVP. In this study, we accessed public data sets to report in silico investigations into gene expression. In addition, we proposed candidate genes that are thought to have a direct association with the pathogenesis of COVID-19, and which may be dependent on signals derived from the MVP. Our results revealed dysregulation of genes involved in the MVP. These results were not found when investigating the gene expression data from host cells infected with H3N2 influenza virus, H1N1 influenza virus, or respiratory syncytial virus. Our manually curated gene set showed significant gene expression variability in A549 cells infected with SARS-CoV-2, as per Blanco-Melo et al. data set (GSE147507). In light of the present findings, SARS-CoV-2 could hijack the MVP, leading to hyperinflammatory responses. Prompt reconstitution of this pathway with available agents should be considered in future studies.


Subject(s)
COVID-19/metabolism , Mevalonic Acid/metabolism , SARS-CoV-2/metabolism , A549 Cells , Autophagy , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Computer Simulation , Cytokines/immunology , Cytokines/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/immunology , Influenza, Human/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , SARS-CoV-2/genetics , Signal Transduction , Transcriptome , Virus Replication
13.
Int J Infect Dis ; 103: 352-357, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-943188

ABSTRACT

BACKGROUND: Global influenza virus circulation decreased during the COVID-19 pandemic, possibly due to widespread community mitigation measures. Cambodia eased some COVID-19 mitigation measures in June and July 2020. On 20 August a cluster of respiratory illnesses occurred among residents of a pagoda, including people who tested positive for influenza A but none who were positive for SARS-CoV-2. METHODS: A response team was deployed on 25 August 2020. People with influenza-like illness (ILI) were asked questions regarding demographics, illness, personal prevention measures, and residential arrangements. Respiratory swabs were tested for influenza and SARS-Cov-2 by real-time reverse transcription PCR, and viruses were sequenced. Sentinel surveillance data were analyzed to assess recent trends in influenza circulation in the community. RESULTS: Influenza A (H3N2) viruses were identified during sentinel surveillance in Cambodia in July 2020 prior to the reported pagoda outbreak. Among the 362 pagoda residents, 73 (20.2%) ILI cases were identified and 40 were tested, where 33/40 (82.5%) confirmed positive for influenza A (H3N2). All 40 were negative for SARS-CoV-2. Among the 73 residents with ILI, none were vaccinated against influenza, 47 (64%) clustered in 3/8 sleeping quarters, 20 (27%) reported often wearing a mask, 27 (36%) reported often washing hands, and 11 (15%) reported practicing social distancing. All viruses clustered within clade 3c2.A1 close to strains circulating in Australia in 2020. CONCLUSIONS: Circulation of influenza viruses began in the community following the relaxation of national COVID-19 mitigation measures, and prior to the outbreak in a pagoda with limited social distancing. Continued surveillance and influenza vaccination are required to limit the impact of influenza globally.


Subject(s)
COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Adolescent , Adult , Cambodia/epidemiology , Child , Disease Outbreaks , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Male , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sentinel Surveillance , Young Adult
14.
Euro Surveill ; 25(46)2020 11.
Article in English | MEDLINE | ID: covidwho-937369

ABSTRACT

The COVID-19 pandemic negatively impacted the 2019/20 WHO European Region influenza surveillance. Compared with previous 4-year averages, antigenic and genetic characterisations decreased by 17% (3,140 vs 2,601) and 24% (4,474 vs 3,403). Of subtyped influenza A viruses, 56% (26,477/47,357) were A(H1)pdm09, 44% (20,880/47,357) A(H3). Of characterised B viruses, 98% (4,585/4,679) were B/Victoria. Considerable numbers of viruses antigenically differed from northern hemisphere vaccine components. In 2020/21, maintaining influenza virological surveillance, while supporting SARS-CoV-2 surveillance is crucial.


Subject(s)
Coronavirus Infections/epidemiology , Disease Notification/statistics & numerical data , Epidemiological Monitoring , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Antigens, Viral/genetics , Betacoronavirus , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/genetics , Influenza B virus/genetics , Pandemics , Pneumonia, Viral , Population Surveillance , RNA, Viral/genetics , SARS-CoV-2 , Sequence Analysis, DNA
15.
Front Immunol ; 11: 552909, 2020.
Article in English | MEDLINE | ID: covidwho-803900

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Pneumonia, Viral/epidemiology , SARS Virus/genetics , Severe Acute Respiratory Syndrome/epidemiology , Animals , Betacoronavirus/pathogenicity , Birds/virology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Genome, Viral , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS Virus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Virulence/immunology
16.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-797526

ABSTRACT

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Subject(s)
Biosensing Techniques/instrumentation , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/virology , Aerosols/analysis , Air Microbiology , Biosensing Techniques/economics , Coronavirus 229E, Human/genetics , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Equipment Design , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Time Factors
17.
Clin Infect Dis ; 70(5): 850-858, 2020 02 14.
Article in English | MEDLINE | ID: covidwho-326398

ABSTRACT

BACKGROUND: Respiratory virus-laden particles are commonly detected in the exhaled breath of symptomatic patients or in air sampled from healthcare settings. However, the temporal relationship of detecting virus-laden particles at nonhealthcare locations vs surveillance data obtained by conventional means has not been fully assessed. METHODS: From October 2016 to June 2018, air was sampled weekly from a university campus in Hong Kong. Viral genomes were detected and quantified by real-time reverse-transcription polymerase chain reaction. Logistic regression models were fitted to examine the adjusted odds ratios (aORs) of ecological and environmental factors associated with the detection of virus-laden airborne particles. RESULTS: Influenza A (16.9% [117/694]) and influenza B (4.5% [31/694]) viruses were detected at higher frequencies in air than rhinovirus (2.2% [6/270]), respiratory syncytial virus (0.4% [1/270]), or human coronaviruses (0% [0/270]). Multivariate analyses showed that increased crowdedness (aOR, 2.3 [95% confidence interval {CI}, 1.5-3.8]; P < .001) and higher indoor temperature (aOR, 1.2 [95% CI, 1.1-1.3]; P < .001) were associated with detection of influenza airborne particles, but absolute humidity was not (aOR, 0.9 [95% CI, .7-1.1]; P = .213). Higher copies of influenza viral genome were detected from airborne particles >4 µm in spring and <1 µm in autumn. Influenza A(H3N2) and influenza B viruses that caused epidemics during the study period were detected in air prior to observing increased influenza activities in the community. CONCLUSIONS: Air sampling as a surveillance tool for monitoring influenza activity at public locations may provide early detection signals on influenza viruses that circulate in the community.


Subject(s)
Influenza, Human , Respiratory Tract Infections , Hong Kong/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Longitudinal Studies , Universities
SELECTION OF CITATIONS
SEARCH DETAIL