Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
MMWR Morb Mortal Wkly Rep ; 70(49): 1712-1714, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1561757

ABSTRACT

On November 10, 2021, the Michigan Department of Health and Human Services (MDHHS) was notified of a rapid increase in influenza A(H3N2) cases by the University Health Service (UHS) at the University of Michigan in Ann Arbor. Because this outbreak represented some of the first substantial influenza activity during the COVID-19 pandemic, CDC, in collaboration with the university, MDHHS, and local partners conducted an investigation to characterize and help control the outbreak. Beginning August 1, 2021, persons with COVID-19-like* or influenza-like illness evaluated at UHS received testing for SARS-CoV-2, influenza, and respiratory syncytial viruses by rapid multiplex molecular assay.† During October 6-November 19, a total of 745 laboratory-confirmed influenza cases were identified.§ Demographic information, genetic characterization of viruses, and influenza vaccination history data were reviewed. This activity was conducted consistent with applicable federal law and CDC policy.¶.


Subject(s)
Disease Outbreaks , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Adult , Female , Humans , Male , Michigan/epidemiology , Students/statistics & numerical data , Universities , Young Adult
2.
PLoS One ; 16(12): e0260947, 2021.
Article in English | MEDLINE | ID: covidwho-1556896

ABSTRACT

BACKGROUND: On 9th January 2020, China CDC reported a novel coronavirus (later named SARS-CoV-2) as the causative agent of the coronavirus disease 2019 (COVID-19). Identifying the first appearance of virus is of epidemiological importance to tracking and mapping the spread of SARS-CoV-2 in a country. We therefore conducted a retrospective observational study to detect SARS-CoV-2 in oropharyngeal samples collected from hospitalized patients with a Severe Acute Respiratory Infection (SARI) enrolled in the DRIVE (Development of Robust and Innovative Vaccine Effectiveness) study in five Italian hospitals (CIRI-IT BIVE hospitals network) (1st November 2019 - 29th February 2020). OBJECTIVES: To acquire new information on the real trend in SARS-CoV-2 infection during pandemic phase I and to determine the possible early appearance of the virus in Italy. MATERIALS AND METHODS: Samples were tested for influenza [RT-PCR assay (A/H1N1, A/H3N2, B/Yam, B/Vic)] in accordance with the DRIVE study protocol. Subsequently, swabs underwent molecular testing for SARS-COV-2. [one-step real-time multiplex retro-transcription (RT) PCR]. RESULTS: In the 1683 samples collected, no evidence of SARS-CoV-2 was found. Moreover, 28.3% (477/1683) of swabs were positive for influenza viruses, the majority being type A (358 vs 119 type B). A/H3N2 was predominant among influenza A viruses (55%); among influenza B viruses, B/Victoria was prevalent. The highest influenza incidence rate was reported in patients aged 0-17 years (40.3%) followed by those aged 18-64 years (24.4%) and ≥65 years (14.8%). CONCLUSIONS: In Italy, some studies have shown the early circulation of SARS-CoV-2 in northern regions, those most severely affected during phase I of the pandemic. In central and southern regions, by contrast no early circulation of the virus was registered. These results are in line with ours. These findings highlight the need to continue to carry out retrospective studies, in order to understand the epidemiology of the novel coronavirus, to better identify the clinical characteristics of COVID-19 in comparison with other acute respiratory illnesses (ARI), and to evaluate the real burden of COVID-19 on the healthcare system.


Subject(s)
Influenza, Human/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , Female , Hospitals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/pathology , Influenza, Human/virology , Italy/epidemiology , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/metabolism , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Young Adult
3.
Clin Neurol Neurosurg ; 210: 106956, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525730

ABSTRACT

Influenza virus-associated encephalopathy/encephalitis is a rare entity in adults that can lead to severe neurological sequelae and even death. The clinical presentation can be quite diverse. This absence of a typical presentation along with the difficulty detecting the virus in the cerebrospinal fluid represents a diagnostic challenge. We present the case of a 79-year-old male with sudden onset of decreased consciousness and signs of right hemisphere damage. The presence of influenza A (H3N2) virus in respiratory sample along with compatible findings in cranial magnetic resonance led to the diagnosis. The patient died without responding to treatment with antivirals and immunomodulators and the anatomopathological study did not detect infectious agent. Early diagnostic suspicion is essential to establish adequate treatment and improve the prognosis.


Subject(s)
Cerebral Cortex/diagnostic imaging , Encephalitis, Viral/diagnostic imaging , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/diagnostic imaging , Aged , Cerebral Cortex/virology , Humans , Magnetic Resonance Imaging , Male
4.
BMC Infect Dis ; 20(1): 148, 2020 Feb 18.
Article in English | MEDLINE | ID: covidwho-1453043

ABSTRACT

BACKGROUND: The influenza virus spreads rapidly around the world in seasonal epidemics, resulting in significant morbidity and mortality. Influenza-related incidence data are limited in many countries in Africa despite established sentinel surveillance. This study aimed to address the information gap by estimating the burden and seasonality of medically attended influenza like illness in Ethiopia. METHOD: Influenza sentinel surveillance data collected from 3 influenza like illness (ILI) and 5 Severe Acute Respiratory Illness (SARI) sites from 2012 to 2017 was used for analysis. Descriptive statistics were applied for simple analysis. The proportion of medically attended influenza positive cases and incidence rate of ILI was determined using total admitted patients and catchment area population. Seasonality was estimated based on weekly trend of ILI and predicted threshold was done by applying the "Moving Epidemic Method (MEM)". RESULT: A total of 5715 medically attended influenza suspected patients who fulfills ILI and SARI case definition (77% ILI and 23% SARI) was enrolled. Laboratory confirmed influenza virus (influenza positive case) among ILI and SARI suspected case was 25% (1130/4426) and 3% (36/1289). Of which, 65% were influenza type A. The predominantly circulating influenza subtype were seasonal influenza A(H3N2) (n = 455, 60%) and Influenza A(H1N1)pdm09 (n = 293, 38.81%). The estimated mean annual influenza positive case proportion and ILI incidence rate was 160.04 and 52.48 per 100,000 population. The Incidence rate of ILI was higher in the age group of 15-44 years of age ['Incidence rate (R) = 254.6 per 100,000 population', 95% CI; 173.65, 335.55] and 5-14 years of age [R = 49.5, CI 95%; 31.47, 130.43]. The seasonality of influenza has two peak seasons; in a period from October-December and from April-June. CONCLUSION: Significant morbidity of influenza like illness was observed with two peak seasons of the year and seasonal influenza A (H3N2) remains the predominantly circulating influenza subtype. Further study need to be considered to identify potential risks and improving the surveillance system to continue early detection and monitoring of circulating influenza virus in the country has paramount importance.


Subject(s)
Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Adult , Child , Child, Preschool , Ethiopia/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Infant , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Laboratories , Male , Middle Aged , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/etiology , Seasons , Sentinel Surveillance , Young Adult
5.
Nanoscale ; 13(1): 388-396, 2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1065973

ABSTRACT

Inspired by the self-assembly approach, in this work, the chromogen, 3,3',5,5'-tetramethylbenzidine (TMB), was successfully co-precipitated in aqueous solution to form collective nanoparticles (NPs) of signal molecules (TMB-NPs). Utilizing poly(lactide-co-glycolide) (PLGA) in the molecular delivery approach, the formed emulsion nanovesicle (TMB-NPs@PLGA) exhibits an enrichment of the collective signal molecules in a single antibody-antigen conjugation. A specific antibody-conjugated TMB-NPs@PLGA forms an immunocomplex sandwich structure upon the addition of influenza virus (IV)/A. The addition of dimethyl sulfoxide (DMSO) dissolves the PLGA nanovesicles, releasing the encapsulated TMB-NPs. Sequentially, the TMB-NPs release TMB molecules upon the addition of DMSO. The released TMB is catalytically oxidized by H2O2 with self-assembled protein-inorganic nanoflowers, where copper nanoflowers (CuNFs) acted as the nanozyme. The developed immunoassay demonstrates high sensitivity for IV/A with a limit of detection (LOD) as low as 32.37 fg mL-1 and 54.97 fg mL-1 in buffer and serum, respectively. For practical needs, a clinically isolated IV/A/H3N2 and spike protein of SARS-CoV-2 were detected with the LODs of 17 pfu mL-1 and 143 fg mL-1, respectively. These results show the applicability of the advanced TMB-NPs@PLGA-based colorimetric sensor for the highly sensitive detection of airborne respiratory viruses.


Subject(s)
Biosensing Techniques/methods , Chromogenic Compounds/chemistry , Influenza A Virus, H3N2 Subtype/isolation & purification , Respiratory Tract Infections , SARS-CoV-2/isolation & purification , Benzidines/chemistry , COVID-19/diagnosis , COVID-19/virology , Humans , Hydrogen Peroxide , Immunoassay/methods , Influenza, Human/diagnosis , Influenza, Human/virology , Limit of Detection , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus
6.
Nanoscale ; 13(1): 388-396, 2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-989974

ABSTRACT

Inspired by the self-assembly approach, in this work, the chromogen, 3,3',5,5'-tetramethylbenzidine (TMB), was successfully co-precipitated in aqueous solution to form collective nanoparticles (NPs) of signal molecules (TMB-NPs). Utilizing poly(lactide-co-glycolide) (PLGA) in the molecular delivery approach, the formed emulsion nanovesicle (TMB-NPs@PLGA) exhibits an enrichment of the collective signal molecules in a single antibody-antigen conjugation. A specific antibody-conjugated TMB-NPs@PLGA forms an immunocomplex sandwich structure upon the addition of influenza virus (IV)/A. The addition of dimethyl sulfoxide (DMSO) dissolves the PLGA nanovesicles, releasing the encapsulated TMB-NPs. Sequentially, the TMB-NPs release TMB molecules upon the addition of DMSO. The released TMB is catalytically oxidized by H2O2 with self-assembled protein-inorganic nanoflowers, where copper nanoflowers (CuNFs) acted as the nanozyme. The developed immunoassay demonstrates high sensitivity for IV/A with a limit of detection (LOD) as low as 32.37 fg mL-1 and 54.97 fg mL-1 in buffer and serum, respectively. For practical needs, a clinically isolated IV/A/H3N2 and spike protein of SARS-CoV-2 were detected with the LODs of 17 pfu mL-1 and 143 fg mL-1, respectively. These results show the applicability of the advanced TMB-NPs@PLGA-based colorimetric sensor for the highly sensitive detection of airborne respiratory viruses.


Subject(s)
Biosensing Techniques/methods , Chromogenic Compounds/chemistry , Influenza A Virus, H3N2 Subtype/isolation & purification , Respiratory Tract Infections , SARS-CoV-2/isolation & purification , Benzidines/chemistry , COVID-19/diagnosis , COVID-19/virology , Humans , Hydrogen Peroxide , Immunoassay/methods , Influenza, Human/diagnosis , Influenza, Human/virology , Limit of Detection , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus
7.
Euro Surveill ; 25(46)2020 11.
Article in English | MEDLINE | ID: covidwho-937369

ABSTRACT

The COVID-19 pandemic negatively impacted the 2019/20 WHO European Region influenza surveillance. Compared with previous 4-year averages, antigenic and genetic characterisations decreased by 17% (3,140 vs 2,601) and 24% (4,474 vs 3,403). Of subtyped influenza A viruses, 56% (26,477/47,357) were A(H1)pdm09, 44% (20,880/47,357) A(H3). Of characterised B viruses, 98% (4,585/4,679) were B/Victoria. Considerable numbers of viruses antigenically differed from northern hemisphere vaccine components. In 2020/21, maintaining influenza virological surveillance, while supporting SARS-CoV-2 surveillance is crucial.


Subject(s)
Coronavirus Infections/epidemiology , Disease Notification/statistics & numerical data , Epidemiological Monitoring , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Antigens, Viral/genetics , Betacoronavirus , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/genetics , Influenza B virus/genetics , Pandemics , Pneumonia, Viral , Population Surveillance , RNA, Viral/genetics , SARS-CoV-2 , Sequence Analysis, DNA
8.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-797526

ABSTRACT

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Subject(s)
Biosensing Techniques/instrumentation , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/virology , Aerosols/analysis , Air Microbiology , Biosensing Techniques/economics , Coronavirus 229E, Human/genetics , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Equipment Design , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL