Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Infect Public Health ; 15(5): 599-608, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796483

ABSTRACT

AIMS: Post-viral mental health problems (MHP) in COVID-19 patients and survivors were anticipated already during early stages of this pandemic. We aimed to synthesize the prevalence of the anxiety, depression, post-traumatic and general distress domain associated with virus epidemics since 2002. METHODS: In this systematic review and meta-analysis, we searched PubMed, PsycINFO, and Embase from 2002 to April 14, 2021 for peer-reviewed studies reporting prevalence of MHP in adults with laboratory-confirmed or suspected SARS-CoV-1, H1N1, MERS-CoV, H7N9, Ebolavirus, or SARS-CoV-2 infection. We included studies that assessed post-viral MHP with validated and frequently used scales. A three-level random-effects meta-analysis for dependent effect sizes was conducted to account for multiple outcome reporting. We pooled MHP across all domains and separately by severity (above mild or moderate-to-severe) and by acute (one month), ongoing (one to three months), and post-illness stages (longer than three months). A meta-regression was conducted to test for moderating effects, particularly for exploring estimate differences between SARS-Cov-2 and previous pandemics and epidemics. PROSPERO registration: CRD42020194535. RESULTS: We identified 59 studies including between 14 and 1002 participants and providing 187 prevalence estimates. MHP, in general, decreased from acute to post-illness from 46.3% to 38.8% and for mild and moderate-to-severe from 22.3% to 18.8%, respectively. We found no evidence of moderating effects except for non-random sampling and H1N1 showing higher prevalence. There was a non-significant trend towards lower MHP for SARS-CoV-2 compared to previous epidemics. CONCLUSIONS: MHP prevalence estimates decreased over time but were still on a substantial level at post-illness. Post-viral mental health problems caused by SARS-CoV-2 could have been expected much earlier, given the previous post-viral sequelae.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Adult , COVID-19/epidemiology , Humans , Mental Health , Pandemics , Prevalence , SARS-CoV-2
2.
J Virol ; 96(4): e0157821, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1759290

ABSTRACT

The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.


Subject(s)
COVID-19/prevention & control , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , COVID-19/genetics , COVID-19/immunology , /immunology , Female , HEK293 Cells , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Transgenic , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Pandemics , SARS-CoV-2/genetics
3.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
4.
Transbound Emerg Dis ; 68(6): 3180-3186, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1532922

ABSTRACT

The first human case of zoonotic A(H7N4) avian influenza virus (AIV) infection was reported in early 2018 in China. Two months after this case, novel A(H7N4) viruses phylogenetically related to the Jiangsu isolate emerged in ducks from live bird markets in Cambodia. During active surveillance in Cambodia, a novel A(H7N6) reassortant of the zoonotic low pathogenic AIV (LPAIV) A(H7N4) was detected in domestic ducks at a slaughterhouse. Complete genome sequencing and phylogenetic analysis showed that the novel A(H7N6) AIV is a reassortant, in which four gene segments originated from Cambodia A(H7N4) viruses and four gene segments originated from LPAIVs in Eurasia. Animal infection experiments revealed that chickens transmitted the A(H7N6) virus via low-level direct contacts, but ducks did not. Although avian-origin A(H7Nx) LPAIVs do not contain the critical mammalian-adaptive substitution (E627K) in PB2, the lethality and morbidity of the A(H7N6) virus in BALB/c mice were similar to those of A(H7N9) viruses, suggesting potential for interspecies transmission. Our study reports the emergence of a new reassortant of zoonotic A(H7N4) AIVs with novel viral characteristics and emphasizes the need for ongoing surveillance of avian-origin A(H7Nx) viruses.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Rodent Diseases , Animals , Cambodia/epidemiology , Chickens , China , Ducks , Influenza in Birds/epidemiology , Mice , Mice, Inbred BALB C , Phylogeny , Reassortant Viruses/genetics
5.
J Clin Lab Anal ; 35(12): e24100, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1508785

ABSTRACT

OBJECTIVES: This study aimed to explore clinical indexes for management of severe/critically ill patients with COVID-19, influenza A H7N9, and H1N1 pneumonia by comparing hematological and radiological characteristics. METHODS: Severe/critically ill patients with COVID-19, H7N9, and H1N1 pneumonia were retrospectively enrolled. The demographic data, clinical manifestations, hematological parameters, and radiological characteristics were compared. RESULTS: In this study, 16 cases of COVID-19, 10 cases of H7N9, and 13 cases of H1N1 who met severe/critically ill criteria were included. Compared with COVID-19, H7N9 and H1N1 groups had more chronic diseases (80% and 92.3% vs. 25%, p < 0.05), higher APACHE Ⅱ scores (16.00 ± 8.63 and 15.08 ± 6.24, vs. 5.50 ± 2.58, p < 0.05), higher mortality rates (40% and 46.2% vs. 0%, p < 0.05), significant lymphocytopenia (0.59 ± 0.31 × 109 /L and 0.56 ± 0.35 × 109 /L vs. 0.97 ± 0.33 × 109 /L, p < 0.05), and elevated neutrophil-to-lymphocyte ratio (NLR; 14.67 ± 6.10 and 14.64 ± 10.36 vs. 6.29 ± 3.72, p < 0.05). Compared with the H7N9 group, ground-glass opacity (GGO) on chest CT was common in the COVID-19 group (p = 0.028), while pleural effusion was rare (p = 0.001). CONCLUSIONS: The NLR can be used as a clinical parameter for the predication of risk stratification and outcome in COVID-19 and influenza A pneumonia. Manifestations of pleural effusion or GGO in chest CT may be helpful for the identification of different viral pneumonia.


Subject(s)
COVID-19/blood , COVID-19/diagnostic imaging , Influenza, Human/blood , Influenza, Human/diagnostic imaging , Aged , Aged, 80 and over , Blood Cell Count , COVID-19/etiology , Chronic Disease , Critical Illness , Female , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human/etiology , Influenza, Human/virology , Male , Middle Aged , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Retrospective Studies , Sex Factors
7.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
8.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
9.
Front Public Health ; 9: 629295, 2021.
Article in English | MEDLINE | ID: covidwho-1376720

ABSTRACT

Background: Since the novel coronavirus disease (COVID-19) has been a worldwide pandemic, the early surveillance and public health emergency disposal are considered crucial to curb this emerging infectious disease. However, studies of COVID-19 on this topic in China are relatively few. Methods: A case-comparison study was conducted using a set of six key time nodes to form a reference framework for evaluating early surveillance and public health emergency disposal between H7N9 avian influenza (2013) in Shanghai and COVID-19 in Wuhan, China. Findings: A report to the local Center for Disease Control and Prevention, China, for the first hospitalized patient was sent after 6 and 20 days for H7N9 avian influenza and COVID-19, respectively. In contrast, the pathogen was identified faster in the case of COVID-19 than in the case of H7N9 avian influenza (12 vs. 31 days). The government response to COVID-19 was 10 days later than that to avian influenza. The entire process of early surveillance and public health emergency disposal lasted 5 days longer in COVID-19 than in H7N9 avian influenza (46 vs. 41 days). Conclusions: The identification of the unknown pathogen improved in China between the outbreaks of avian influenza and COVID-19. The longer emergency disposal period in the case of COVID-19 could be attributed to the government's slower response to the epidemic. Improving public health emergency management could lessen the adverse social effects of emerging infectious diseases and public health crisis in the future.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Case-Control Studies , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Pandemics , Public Health , SARS-CoV-2
10.
Infect Genet Evol ; 93: 104993, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373190

ABSTRACT

Avian influenza virus (AIV) H7N9 that emerged in 2013 in eastern China is a novel zoonotic agent mainly circulating in poultry without clinical signs but causing severe disease with high fatality in humans in more than 5 waves. Since the emergence of highly pathogenic (HP) H7N9 variants in 2016, it has induced heavy losses in the poultry industry leading to the implementation of an intensive nationwide vaccination program at the end of wave 5 (September 2017). To characterize the ongoing evolution of H7N9 AIV, we conducted analyses of H7N9 glycoprotein genes obtained from 2013 to 2019. Bayesian analyses revealed a decreasing population size of HP H7N9 variants post wave 5. Phylogenetic topologies revealed that two novel small subclades were formed and carried several fixed amino acid mutations that were along HA and NA phylogenetic trees since wave 5. Some of the mutations were located at antigenic sites or receptor binding sites. The antigenic analysis may reveal a significant antigenic drift evaluated by hemagglutinin inhibition (HI) assay and the antigenicity of H7N9 AIV might evolute in large leaps in wave 7. Molecular simulations found that the mutations (V135T, S145P, and L226Q) around the HA receptor pocket increased the affinity to α2,3-linked sialic acid (SIA) while decreased to α2,6-linked SIA. Altered affinity may suggest that HP H7N9 variations aggravate the pathogenicity to poultry but lessen the threat to public health. Selection analyses showed that the HP H7N9 AIV experienced an increasing selection pressure since wave 5, and the national implementation of vaccination might intensify the role of natural selection during the evolution waves 6 and 7. In summary, our data provide important insights about the genetic and antigenic diversity of circulating HP H7N9 viruses from 2017 to 2019. Enhanced surveillance is urgently warranted to understand the current situation of HP H7N9 AIV.


Subject(s)
Antigenic Variation/immunology , Birds , Genetic Variation , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Animals , China , Influenza A Virus, H7N9 Subtype/immunology , Phylogeny
11.
Science ; 373(6557): 918-922, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367378

ABSTRACT

Zoonotic avian influenza A virus (IAV) infections are rare. Sustained transmission of these IAVs between humans has not been observed, suggesting a role for host genes. We used whole-genome sequencing to compare avian IAV H7N9 patients with healthy controls and observed a strong association between H7N9 infection and rare, heterozygous single-nucleotide variants in the MX1 gene. MX1 codes for myxovirus resistance protein A (MxA), an interferon-induced antiviral guanosine triphosphatase known to control IAV infections in transgenic mice. Most of the MxA variants identified lost the ability to inhibit avian IAVs, including H7N9, in transfected human cell lines. Nearly all of the inactive MxA variants exerted a dominant-negative effect on the antiviral function of wild-type MxA, suggesting an MxA null phenotype in heterozygous carriers. Our study provides genetic evidence for a crucial role of the MX1-based antiviral defense in controlling zoonotic IAV infections in humans.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/genetics , Influenza, Human/virology , Myxovirus Resistance Proteins/genetics , Agricultural Workers' Diseases/genetics , Agricultural Workers' Diseases/virology , Animals , Cell Line , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A virus/physiology , Mutation, Missense , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/metabolism , Poultry , Viral Zoonoses , Whole Genome Sequencing
12.
Vaccine ; 39(33): 4628-4640, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1292968

ABSTRACT

Current influenza vaccines rely on inducing antibody responses to the rapidly evolving hemagglutinin (HA) and neuraminidase (NA) proteins, and thus need to be strain-matched. However, predictions of strains that will circulate are imperfect, and manufacturing of new vaccines based on them takes months. As an alternative, universal influenza vaccines target highly conserved antigens. In proof of concept studies of universal vaccine candidates in animal models challenge is generally conducted only a short time after vaccination, but protective immunity lasting far longer is important for the intended public health impact. We address the challenge of providing long-term protection. We demonstrate here broad, powerful, and long-lasting immune protection for a promising universal vaccine candidate. A single intranasal dose of recombinant adenoviruses (rAd) expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) was used. Extending our previous studies of this type of vaccine, we show that antibody and T-cell responses persist for over a year without boosting, and that protection against challenge persists a year after vaccination and remains broad, covering both group 1 and 2 influenza A viruses. In addition, we extend the work to influenza B. Immunization with influenza B nucleoprotein (B/NP)-rAd also gives immune responses that last a year without boosting and protect against challenge with influenza B viruses of mismatched HA lineages. Despite host immunity to adenoviral antigens, effective readministration is possible a year after primary vaccination, as shown by successful immunization to a transgene product the animals had not seen before. Protection against challenge with divergent and highly pathogenic A/H7N9 virus was weaker but was enhanced by a second dose of vaccine. Thus, this mucosal vaccination to conserved influenza antigens confers very long-lasting immune protection in animals against a broad range of influenza A and B viruses.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunity , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Vaccination
13.
Int J Environ Res Public Health ; 18(13)2021 06 22.
Article in English | MEDLINE | ID: covidwho-1282499

ABSTRACT

BACKGROUND: There is increasing evidence that healthcare workers (HCWs) experience significant psychological distress during an epidemic or pandemic. Considering the increase in emerging infectious diseases and the ongoing COVID-19 pandemic, it is timely to review and synthesize the available evidence on the psychological impact of disease outbreaks on HCWs. Thus, we conducted a systematic review to examine the impact of epidemics and pandemics on the mental health of HCWs. METHOD: PubMed, PsycInfo, and PsycArticles databases were systematically searched from inception to June-end 2020 for studies reporting the impact of a pandemic/epidemic on the mental health of HCWs. RESULTS: Seventy-six studies were included in this review. Of these, 34 (45%) focused on SARS, 28 (37%) on COVID-19, seven (9%) on MERS, four (5%) on Ebola, two (3%) on H1N1, and one (1%) on H7N9. Most studies were cross-sectional (93%) and were conducted in a hospital setting (95%). Common mental health symptoms identified by this review were acute stress disorder, depression, anxiety, insomnia, burnout, and post-traumatic stress disorder. The associated risk factors were working in high-risk environments (frontline), being female, being a nurse, lack of adequate personal protective equipment, longer shifts, lack of knowledge of the virus, inadequate training, less years of experience in healthcare, lack of social support, and a history of quarantine. CONCLUSION: HCWs working in the frontline during epidemics and pandemics experience a wide range of mental health symptoms. It is imperative that adequate psychological support be provided to HCWs during and after these extraordinary distressful events.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Anxiety , Cross-Sectional Studies , Female , Health Personnel , Humans , Mental Health , Pandemics , SARS-CoV-2
14.
Emerg Microbes Infect ; 10(1): 1191-1199, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1246663

ABSTRACT

The ongoing COVID-19 pandemic has led to more than 159 million confirmed cases with over 3.3 million deaths worldwide, but it remains mystery why most infected individuals (∼98%) were asymptomatic or only experienced mild illness. The same mystery applies to the deadly 1918 H1N1 influenza pandemic, which has puzzled the field for a century. Here we discuss dual potential properties of the 1918 H1N1 pandemic viruses that led to the high fatality rate in the small portion of severe cases, while about 98% infected persons in the United States were self-limited with mild symptoms, or even asymptomatic. These variations now have been postulated to be impacted by polymorphisms of the sialic acid receptors in the general population. Since coronaviruses (CoVs) also recognize sialic acid receptors and cause severe acute respiratory syndrome epidemics and pandemics, similar principles of influenza virus evolution and pandemicity may also apply to CoVs. A potential common principle of pathogen/host co-evolution of influenza and CoVs under selection of host sialic acids in parallel with different epidemic and pandemic influenza and coronaviruses is discussed.


Subject(s)
COVID-19/pathology , Influenza, Human/pathology , Receptors, Cell Surface/genetics , Receptors, Virus/genetics , Sialic Acids/metabolism , Asymptomatic Diseases , Biological Evolution , COVID-19/mortality , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/mortality , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Saliva/metabolism , Saliva/virology
15.
Front Med ; 15(4): 507-527, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1188167

ABSTRACT

The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Poultry , SARS-CoV-2
16.
BMC Psychiatry ; 21(1): 91, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1079232

ABSTRACT

BACKGROUND: Prior to the COVID-19 pandemic, physicians experienced unprecedented levels of burnout. The uncertainty of the ongoing COVID-19 pandemic along with increased workload and difficult medical triage decisions may lead to a further decline in physician psychological health. METHODS: We searched Medline, EMBASE, and PsycINFO for primary research from database inception (Medline [1946], EMBASE [1974], PsycINFO [1806]) to November 17, 2020. Titles and abstracts were screened by one of three reviewers and full-text article screening and data abstraction were conducted independently, and in duplicate, by three reviewers. RESULTS: From 6223 unique citations, 480 articles were reviewed in full-text, with 193 studies (of 90,499 physicians) included in the final review. Studies reported on physician psychological symptoms and management during seven infectious disease outbreaks (severe acute respiratory syndrome [SARS], three strains of Influenza A virus [H1N1, H5N1, H7N9], Ebola, Middle East respiratory syndrome [MERS], and COVID-19) in 57 countries. Psychological symptoms of anxiety (14.3-92.3%), stress (11.9-93.7%), depression (17-80.5%), post-traumatic stress disorder (13.2-75.2%) and burnout (14.7-76%) were commonly reported among physicians, regardless of infectious disease outbreak or country. Younger, female (vs. male), single (vs. married), early career physicians, and those providing direct care to infected patients were associated with worse psychological symptoms. INTERPRETATION: Physicians should be aware that psychological symptoms of anxiety, depression, fear and distress are common, manifest differently and self-management strategies to improve psychological well-being exist. Health systems should implement short and long-term psychological supports for physicians caring for patients with COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Physicians , Depression/epidemiology , Depression/therapy , Disease Outbreaks , Female , Humans , Male , Pandemics , SARS-CoV-2 , Stress, Psychological
17.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(12): 1994-1998, 2020 Dec 10.
Article in Chinese | MEDLINE | ID: covidwho-1067788

ABSTRACT

Shanghai Municipal Center for Disease Control and Prevention has implemented an active comprehensive surveillance project of acute respiratory infections in adults in Shanghai, including influenza like illness (ILI) and severe acute respiratory infection (SARI). By testing and identifying a variety of respiratory pathogens, it was found that influenza viruses were the main pathogens in 172 ILI cases in 2019. The positive rates of influenza A (H1N1) pdm09 virus, influenza A (H3N2) virus and influenza B virus Victoria lineage were 30.81%, 14.53% and 30.55%, respectively. The positive detection of influenza A (H1N1) pdm09 virus peaked in the first quarter. The positive rate of enterovirus/human rhinovirus was 6.40%, with a positive detection peak in the third quarter, while the positive rate of adenovirus was 4.65% with a positive detection peak in the second quarter of the year. Two human coronavirus (HCoV)-OC43 positive samples, 1 HCoV-HKU1 positive sample and 1 HCoV-NL63 positive sample were detected, respectively, and no HCoV-229E positive sample was detected. The detection rate of Staphylococcus aureus was 17.44%, and the detection rate of Klebsiellapneumoniae was 9.88%. Influenza viruses were also the main pathogens in 1 447 SARI cases. The positive rates of influenza A (H1N1) pdm09 virus, influenza A (H3N2) virus and influenza B virus Victoria lineage were 5.46%, 1.73% and 0.30%, respectively. The positive detection of influenza A (H1N1) pdm09 virus (17.50%) peaked in the first quarter. The total positive detection rate of enterovirus/human rhinovirus was 2.97%, the positive detection peaked in the first quarter. The positive rate of Mycoplasma pneumoniae was 3.25% and the positive rate of Legionella was 1.04%. 5 HCoV-229E positive samples, 10 HCoV-OC43 positive samples, 7 HCoV-HKU1 positive samples and 6 HCoV-NL63 positive samples were detected. Eight strains of Staphylococcus aureus, 4 strains of Pseudomonas aeruginosa and 3 strains of Klebsiella pneumoniae were detected after cultures. By implementing the active surveillance, we not only detected a case of human infection with avian influenza A(H7N9) virus in time, but also preliminary understood the pathogenic spectrum characteristics and seasonality of ILI and SARI in Shanghai. In recent years, the surveillance methods have been continuously improved and the number of sentinel hospitals has increased gradually. In particular, for the response to COVID-19, the Surveillance Information Reporting System of Acute Respiratory Infection based on HIS system has been promoted to cover the whole city, which might lay a foundation for the active surveillance and early warning of emerging infectious diseases in the future.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Tract Infections , Acute Disease , China/epidemiology , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , SARS-CoV-2
18.
Biochem Biophys Res Commun ; 545: 145-149, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1061767

ABSTRACT

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/biosynthesis , Influenza, Human/prevention & control , Pandemics/prevention & control , Animals , Antigens, Viral/biosynthesis , Antigens, Viral/immunology , Drug Compounding/methods , Drug Compounding/statistics & numerical data , Drug Industry/standards , Female , Humans , Influenza Vaccines/immunology , Influenza Vaccines/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Vaccines, Inactivated/biosynthesis , Vaccines, Inactivated/immunology , Vaccines, Inactivated/isolation & purification
19.
Infect Dis Poverty ; 9(1): 163, 2020 Dec 02.
Article in English | MEDLINE | ID: covidwho-954569

ABSTRACT

BACKGROUND: There is an urgent need to better understand the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for that the coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. This paper was to differentiate COVID-19 from other respiratory infectious diseases such as avian-origin influenza A (H7N9) and influenza A (H1N1) virus infections. METHODS: We included patients who had been hospitalized with laboratory-confirmed infection by SARS-CoV-2 (n = 83), H7N9 (n = 36), H1N1 (n = 44) viruses. Clinical presentation, chest CT features, and progression of patients were compared. We used the Logistic regression model to explore the possible risk factors. RESULTS: Both COVID-19 and H7N9 patients had a longer duration of hospitalization than H1N1 patients (P < 0.01), a higher complication rate, and more severe cases than H1N1 patients. H7N9 patients had higher hospitalization-fatality ratio than COVID-19 patients (P = 0.01). H7N9 patients had similar patterns of lymphopenia, neutrophilia, elevated alanine aminotransferase, C-reactive protein, lactate dehydrogenase, and those seen in H1N1 patients, which were all significantly different from patients with COVID-19 (P < 0.01). Either H7N9 or H1N1 patients had more obvious symptoms, like fever, fatigue, yellow sputum, and myalgia than COVID-19 patients (P < 0.01). The mean duration of viral shedding was 9.5 days for SARS-CoV-2 vs 9.9 days for H7N9 (P = 0.78). For severe cases, the meantime from illness onset to severity was 8.0 days for COVID-19 vs 5.2 days for H7N9 (P < 0.01), the comorbidity of chronic heart disease was more common in the COVID-19 patients than H7N9 (P = 0.02). Multivariate analysis showed that chronic heart disease was a possible risk factor (OR > 1) for COVID-19, compared with H1N1 and H7N9. CONCLUSIONS: The proportion of severe cases were higher for H7N9 and SARS-CoV-2 infections, compared with H1N1. The meantime from illness onset to severity was shorter for H7N9. Chronic heart disease was a possible risk factor for COVID-19.The comparison may provide the rationale for strategies of isolation and treatment of infected patients in the future.


Subject(s)
COVID-19/pathology , COVID-19/virology , Influenza, Human/pathology , Influenza, Human/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Child , Child, Preschool , Comorbidity , Disease Progression , Female , Hospitalization , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/diagnosis , Influenza, Human/mortality , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Risk Factors , SARS-CoV-2/pathogenicity , Virus Shedding , Young Adult
20.
Front Immunol ; 11: 559113, 2020.
Article in English | MEDLINE | ID: covidwho-868963

ABSTRACT

As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions/immunology , Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/immunology , Animals , Antigen-Presenting Cells/pathology , Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Ferrets , Humans , Orthomyxoviridae Infections/pathology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL