Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Emerg Infect Dis ; 28(6): 1269-1273, 2022 06.
Article in English | MEDLINE | ID: covidwho-1933531

ABSTRACT

A 11-year-old boy with acute myeloid leukemia was brought for treatment of severe acute respiratory infection in the National Capital Region, New Delhi, India. Avian influenza A(H5N1) infection was laboratory confirmed. Complete genome analysis indicated hemagglutinin gene clade 2.3.2.1a. We found the strain to be susceptible to amantadine and neuraminidase inhibitors.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Antiviral Agents/pharmacology , Birds , Child , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , India , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Male , Phylogeny
3.
Viruses ; 14(4)2022 03 30.
Article in English | MEDLINE | ID: covidwho-1834926

ABSTRACT

The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China-with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Amino Acids/genetics , Animals , Chickens , China/epidemiology , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/genetics , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny
4.
Emerg Infect Dis ; 28(3): 639-649, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770988

ABSTRACT

Evaluating the stability of highly pathogenic avian influenza viruses on human skin and measuring the effectiveness of disinfectants are crucial for preventing contact disease transmission. We constructed an evaluation model using autopsy skin samples and evaluated factors that affect the stability and disinfectant effectiveness for various subtypes. The survival time of the avian influenza A(H5N1) virus on plastic surfaces was ≈26 hours and on skin surfaces ≈4.5 hours, >2.5-fold longer than other subtypes. The effectiveness of a relatively low ethanol concentration (32%-36% wt/wt) against the H5N1 subtype was substantially reduced compared with other subtypes. Moreover, recombinant viruses with the neuraminidase gene of H5N1 survived longer on plastic and skin surfaces than other recombinant viruses and were resistant to ethanol. Our results imply that the H5N1 subtype poses a higher contact transmission risk because of its higher stability and ethanol resistance, which might depend on the neuraminidase protein.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Ethanol/pharmacology , Humans , Influenza A Virus, H5N1 Subtype/genetics , Neuraminidase/genetics
5.
Trop Anim Health Prod ; 54(2): 117, 2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1767581

ABSTRACT

The aim of this study was to find the direct economic losses due to the three viral causes of the avian respiratory syndrome, including Newcastle disease (ND), H9N2 influenza, and infectious bronchitis (IB) in stamped-out broiler farms during 2016-2017 across the country. This study was carried out on the information on cross-sectional monitoring in the years 2016-2017. The statistical society of the study was all the active broiler farms of the country stamped out due to respiratory syndrome. This study used compensation insurance data, and other sources. One-way ANOVA or Kruskal-Wallis tests were used to analyze normally and non-normally distributed data. In total, during the study period, 132 broiler farms and 1,723,131 fowls were stamped out. According to the results of the present investigation, the sum of costs and losses due to respiratory complex was 9.47 $US Million, 2016-2017 (5.72 from $US Million chicken meat losses and 3.75 $US Million was the total cost). ND was the main cause of economic losses and costs with 3.86 $US equal to 40.8% of the total. Cost of feeding was the highest followed by veterinary services and medicines, vaccination, and 1-day-old chicks costs with 2.27, 1.11, 0.33, and 0.036 $US Million, 2016-2017. In conclusion, we need to improve the preventive measures against respiratory viruses, especially NDV. Additionally, as the cost of feeding was the largest, it is important to shorten the time interval between disease occurrence and stamping out to reduce the cost.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Cross-Sectional Studies , Farms , Financial Stress , Influenza in Birds/epidemiology , Iran/epidemiology
6.
Virus Genes ; 58(3): 203-213, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1766911

ABSTRACT

Infectious bronchitis virus (IBV) and avian influenza virus (AIV) are two major respiratory infections in chickens. The coinfection of these viruses can cause significant financial losses and severe complications in the poultry industry across the world. To examine transcriptome profile changes during the early stages of infection, differential transcriptional profiles in tracheal tissue of three infected groups (i.e., IBV, AIV, and coinfected) were compared with the control group. Specific-pathogen-free chickens were challenged with Iranian variant-2-like IBV (IS/1494), UT-Barin isolates of H9N2 (A/chicken/Mashhad/UT-Barin/2017), and IBV-AIV coinfection; then, RNA was extracted from tracheal tissue. The Illumina RNA-sequencing (RNA-seq) technique was employed to investigate changes in the Transcriptome. Up- and downregulated differentially expressed genes (DEGs) were detected in the trachea transcriptome of all groups. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology databases were examined to identify possible relationships between DEGs. In the experimental groups, upregulated genes were higher compared to downregulated genes. A more severe immune response was observed in the coinfected group; further, cytokine-cytokine receptor interaction, RIG-I-like receptor signaling, Toll-like receptor signaling, NOD-like receptor signaling, Janus kinase/signal transducer, and activator of transcription, and apoptotic pathways were important upregulated genes in this group. The findings of this paper may give a better understanding of transcriptome changes in the trachea during the early stages of infection with these viruses.


Subject(s)
Bronchitis , Coinfection , Coronavirus Infections , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Bronchitis/genetics , Bronchitis/veterinary , Chickens , Gene Expression Profiling , Infectious bronchitis virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/genetics , Iran , Poultry Diseases/genetics , RNA , Trachea , Transcriptome/genetics
7.
Viruses ; 14(3)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1765950

ABSTRACT

Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2-10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.


Subject(s)
Influenza in Birds , Poultry Diseases , Animals , Chickens , Genetic Variation , Influenza A Virus, H7N3 Subtype/genetics , Turkeys , Virulence/genetics
9.
Environ Sci Pollut Res Int ; 29(29): 44175-44185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1669935

ABSTRACT

The spread of highly pathogenic avian influenza H5N1 has posed a major threat to global public health. Understanding the spatiotemporal outbreak characteristics and environmental factors of H5N1 outbreaks is of great significance for the establishment of effective prevention and control systems. The time and location of H5N1 outbreaks in poultry and wild birds officially confirmed by the World Organization for Animal Health from 2005 to 2019 were collected. Spatial autocorrelation analysis and multidistance spatial agglomeration analysis methods were used to analyze the global outbreak sites of H5N1. Combined with remote sensing data, the correlation between H5N1 outbreaks and environmental factors was analyzed using binary logistic regression methods. We analyzed the correlation between the H5N1 outbreak and environmental factors and finally made a risk prediction for the global H5N1 outbreaks. The results show that the peak of the H5N1 outbreaks occurs in winter and spring. H5N1 outbreaks exhibit aggregation, and a weak aggregation phenomenon is noted on the scale close to 5000 km. Water distance, road distance, railway distance, wind speed, leaf area index (LAI), and specific humidity were protective factors for the outbreak of H5N1, and the odds ratio (OR) were 0.985, 0.989, 0.995, 0.717, 0.832, and 0.935, respectively. Temperature was a risk factor with an OR of 1.073. The significance of these ORs was greater than 95%. The global risk prediction map was obtained. Given that the novel coronavirus (COVID-19) is spreading globally, the methods and results of this study can provide a reference for studying the spread of COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , Poultry
10.
Nature ; 600(7889): 386, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565095
11.
Sci Rep ; 11(1): 23223, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1553757

ABSTRACT

Low pathogenic avian influenza viruses (LPAIVs) have been widespread in poultry and wild birds throughout the world for many decades. LPAIV infections are usually asymptomatic or cause subclinical symptoms. However, the genetic reassortment of LPAIVs may generate novel viruses with increased virulence and cross-species transmission, posing potential risks to public health. To evaluate the epidemic potential and infection landscape of LPAIVs in Guangxi Province, China, we collected and analyzed throat and cloacal swab samples from chickens, ducks and geese from the live poultry markets on a regular basis from 2016 to 2019. Among the 7,567 samples, 974 (12.87%) were LPAIVs-positive, with 890 single and 84 mixed infections. Higher yearly isolation rates were observed in 2017 and 2018. Additionally, geese had the highest isolation rate, followed by ducks and chickens. Seasonally, spring had the highest isolation rate. Subtype H3, H4, H6 and H9 viruses were detected over prolonged periods, while H1 and H11 viruses were detected transiently. The predominant subtypes in chickens, ducks and geese were H9, H3, and H6, respectively. The 84 mixed infection samples contained 22 combinations. Most mixed infections involved two subtypes, with H3 + H4 as the most common combination. Our study provides important epidemiological data regarding the isolation rates, distributions of prevalent subtypes and mixed infections of LPAIVs. These results will improve our knowledge and ability to control epidemics, guide disease management strategies and provide early awareness of newly emerged AIV reassortants with pandemic potential.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry/virology , Animals , Chickens/virology , China/epidemiology , Ducks/virology , Epidemiological Monitoring , Geese/virology , Influenza A virus/genetics
12.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1538547

ABSTRACT

2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.


Subject(s)
Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Birds/virology , Humans , Influenza in Birds/epidemiology , Pandemics/veterinary , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Republic of Korea/epidemiology , Russia/epidemiology
13.
Transbound Emerg Dis ; 68(6): 3180-3186, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1532922

ABSTRACT

The first human case of zoonotic A(H7N4) avian influenza virus (AIV) infection was reported in early 2018 in China. Two months after this case, novel A(H7N4) viruses phylogenetically related to the Jiangsu isolate emerged in ducks from live bird markets in Cambodia. During active surveillance in Cambodia, a novel A(H7N6) reassortant of the zoonotic low pathogenic AIV (LPAIV) A(H7N4) was detected in domestic ducks at a slaughterhouse. Complete genome sequencing and phylogenetic analysis showed that the novel A(H7N6) AIV is a reassortant, in which four gene segments originated from Cambodia A(H7N4) viruses and four gene segments originated from LPAIVs in Eurasia. Animal infection experiments revealed that chickens transmitted the A(H7N6) virus via low-level direct contacts, but ducks did not. Although avian-origin A(H7Nx) LPAIVs do not contain the critical mammalian-adaptive substitution (E627K) in PB2, the lethality and morbidity of the A(H7N6) virus in BALB/c mice were similar to those of A(H7N9) viruses, suggesting potential for interspecies transmission. Our study reports the emergence of a new reassortant of zoonotic A(H7N4) AIVs with novel viral characteristics and emphasizes the need for ongoing surveillance of avian-origin A(H7Nx) viruses.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Rodent Diseases , Animals , Cambodia/epidemiology , Chickens , China , Ducks , Influenza in Birds/epidemiology , Mice , Mice, Inbred BALB C , Phylogeny , Reassortant Viruses/genetics
14.
Transbound Emerg Dis ; 68(6): 3405-3414, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1532918

ABSTRACT

Since its first detection in 1998, avian influenza virus (AIV) subtype H9N2 has been enzootic in Iran. To better understand the evolutionary history of H9N2 viruses in Iran, we sequenced 15 currently circulating H9N2 viruses from domestic poultry during 2017-2019 and performed phylogenetic analysis of complete genome sequences. Phylogenetic analyses indicated that the Iranian H9N2 viruses formed multiple well-supported monophyletic groups within the G1-lineage of H9N2 virus. Our analysis of viral population dynamics revealed an increase in genetic diversity until 2007, corresponding to the multiple introductions and diversification of H9N2 viruses into multiple genetic groups (named Iran 1-4 subgroups), followed by a sudden decrease after 2008. Only the Iran 4 subgroup has survived, expanded, and currently circulates in Iran. The H9N2 viruses possessed many molecular markers associated with mammalian adaption in all gene segments, except neuraminidase gene. Considering the presence of mammalian host-specific markers, the public health threat of H9N2 viruses continues. Molecular analysis showed that Iranian H9N2 strains have continued to evolve and recent strains have multiple amino acid changes and addition of potential N-glycosylation on the antigenic sites of haemagglutinin. Continued antigenic and molecular surveillance of H9N2 viruses in poultry and mammals would be required to monitor further increments in viral evolution and their potential threat to public health.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Chickens , Evolution, Molecular , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Iran/epidemiology , Phylogeny , Poultry
17.
Am J Trop Med Hyg ; 106(1): 127-131, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1497592

ABSTRACT

This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19-related restrictions.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Animals , COVID-19/epidemiology , China/epidemiology , Ducks/virology , Environmental Microbiology , Feces/virology , Humans , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A virus/classification , Poultry , Sewage/virology
18.
Emerg Infect Dis ; 27(10): 2742-2745, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453200

ABSTRACT

In February 2021, routine sentinel surveillance for influenza-like illness in Cambodia detected a human avian influenza A(H9N2) virus infection. Investigations identified no recent H9N2 virus infections in 43 close contacts. One chicken sample from the infected child's house was positive for H9N2 virus and genetically similar to the human virus.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Cambodia/epidemiology , Chickens , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Influenza, Human/epidemiology
19.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453198

ABSTRACT

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL