ABSTRACT
Backyard farming with limited biosecurity creates a massive potential for zoonotic spillover. Cambodia, a developing nation in Southeast Asia, is a hub for emerging and endemic infectious diseases. Due to pandemic-induced job losses in the tourism sector, rumors suggest that many former Cambodian tour guides have turned to backyard farming as a source of income and food security. A cross-sectional study including 331 tour guides and 69 poultry farmers in Cambodia before and during the novel coronavirus disease 2019 (COVID-19) pandemic was conducted. Participants were administered a survey to assess food security, income, and general farming practices. Survey data were collected to evaluate the risk perceptions for avian influenza virus (AIV), antimicrobial resistance (AMR), and general biosecurity management implemented on these poultry farms. Overall, food security decreased for 80.1% of the tour guides during the COVID-19 pandemic. Approximately 21% of the tour guides interviewed used backyard poultry farming to supplement losses of income and food insecurity during the COVID-19 pandemic, with a significantly higher risk than for traditional poultry farmers. Agricultural intensification in Cambodia due to the COVID-19 pandemic has caused an influx of makeshift farms with limited biosecurity. Inadequate biosecurity measures in animal farms can facilitate spillover and contribute to future pandemics. Improved biosecurity and robust viral surveillance systems are critical for reducing the risk of spillover from backyard farms. IMPORTANCE While this study highlights COVID-19-associated changes in poultry production at a small scale in Cambodia, poultry production is expected to expand due to an increase in the global demand for poultry protein during the pandemic, changes in urbanization, and the reduction of the global pork supply caused by African swine fever (ASF). The global demand and surge in poultry products, combined with inadequate biosecurity methods, can lead to an increased risk of domestic animal and human spillovers of zoonotic pathogens such as avian influenza. Countries in regions of endemicity are often plagued by complex emergency situations (i.e., food insecurity and economic fallouts) that hinder efforts to effectively address the emergence (or reemergence) of zoonotic diseases. Thus, novel surveillance strategies for endemic and emerging infectious diseases require robust surveillance systems and biosecurity training programs to prevent future global pandemics.
Subject(s)
African Swine Fever , COVID-19 , Influenza in Birds , Poultry Diseases , Humans , Animals , Swine , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Pandemics/prevention & control , Cambodia/epidemiology , Farms , Biosecurity , African Swine Fever/epidemiology , Cross-Sectional Studies , Animal Husbandry/methods , COVID-19/epidemiology , Zoonoses/epidemiology , Zoonoses/prevention & control , PoultryABSTRACT
Backyard farming with limited biosecurity creates a massive potential for zoonotic spillover. Cambodia, a developing nation in Southeast Asia, is a hub for emerging and endemic infectious diseases. Due to pandemic-induced job losses in the tourism sector, rumors suggest that many former Cambodian tour guides have turned to backyard farming as a source of income and food security. A cross-sectional study including 331 tour guides and 69 poultry farmers in Cambodia before and during the novel coronavirus disease 2019 (COVID-19) pandemic was conducted. Participants were administered a survey to assess food security, income, and general farming practices. Survey data were collected to evaluate the risk perceptions for avian influenza virus (AIV), antimicrobial resistance (AMR), and general biosecurity management implemented on these poultry farms. Overall, food security decreased for 80.1% of the tour guides during the COVID-19 pandemic. Approximately 21% of the tour guides interviewed used backyard poultry farming to supplement losses of income and food insecurity during the COVID-19 pandemic, with a significantly higher risk than for traditional poultry farmers. Agricultural intensification in Cambodia due to the COVID-19 pandemic has caused an influx of makeshift farms with limited biosecurity. Inadequate biosecurity measures in animal farms can facilitate spillover and contribute to future pandemics. Improved biosecurity and robust viral surveillance systems are critical for reducing the risk of spillover from backyard farms. IMPORTANCE While this study highlights COVID-19-associated changes in poultry production at a small scale in Cambodia, poultry production is expected to expand due to an increase in the global demand for poultry protein during the pandemic, changes in urbanization, and the reduction of the global pork supply caused by African swine fever (ASF). The global demand and surge in poultry products, combined with inadequate biosecurity methods, can lead to an increased risk of domestic animal and human spillovers of zoonotic pathogens such as avian influenza. Countries in regions of endemicity are often plagued by complex emergency situations (i.e., food insecurity and economic fallouts) that hinder efforts to effectively address the emergence (or reemergence) of zoonotic diseases. Thus, novel surveillance strategies for endemic and emerging infectious diseases require robust surveillance systems and biosecurity training programs to prevent future global pandemics.
Subject(s)
African Swine Fever , COVID-19 , Influenza in Birds , Poultry Diseases , Humans , Animals , Swine , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Pandemics/prevention & control , Cambodia/epidemiology , Farms , Biosecurity , African Swine Fever/epidemiology , Cross-Sectional Studies , Animal Husbandry/methods , COVID-19/epidemiology , Zoonoses/epidemiology , Zoonoses/prevention & control , PoultryABSTRACT
Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.
Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/transmission , Zoonoses/epidemiology , Zoonoses/transmission , Animals , Birds , Central Nervous System Viral Diseases/prevention & control , Ecosystem , Humans , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/transmission , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zoonoses/prevention & controlABSTRACT
COVID-19 should be a "call to arms" for the poultry industry to reassess containment of the H9N2 subtype of low pathogenicity avian influenza viruses. Strains of this virus are a human pandemic threat and a severe economic burden on poultry production. Over the past 20 years they have spread throughout Asia, Africa, Middle East and parts of Europe. As a global industry, a critical need is to re-imagine production and marketing chains, especially in low and middle-income countries, where the structure of much of the industry facilitates virus transmission, especially, but not only, in improperly managed live poultry markets and related value chains. Better, appropriately matched vaccines are needed to support this process but such vaccines cannot, alone, overcome the existing defects in biosecurity, including high farm densities. None of this will occur unless the threat posed by this virus to global health security is recognized.