Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Virol ; 97(1): e0143122, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2193450

ABSTRACT

Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/therapy , Immune Evasion/genetics , Mutation
2.
Eur Rev Med Pharmacol Sci ; 26(21): 8172-8179, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117927

ABSTRACT

OBJECTIVE: To compare the characteristics and outcomes of critically ill patients admitted to the intensive care unit (ICU) due to COVID-19 or influenza- associated pneumonia. PATIENTS AND METHODS: We conducted a two-center retrospective study on patients admitted to the ICU due to either COVID-19 associated pneumonia (CAP) or influenza-associated pneumonia (IAP). Baseline characteristics, therapy during hospitalization and clinical outcomes were assessed. RESULTS: Our study included 86 patients admitted to the ICU. Twenty-four patients (28%) had IAP and 62 patients (72%) had CAP. Those with IAP had more comorbidities of cardiac disease (p=0.005) and chronic obstructive lung disease (p=0.03) compared to those with CAP. Non-invasive ventilation was used significantly more in patients with IAP (p=0.001). The use of neuromuscular blockade was significantly higher in CAP patients (p=0.001). CAP patients had less favourable ventilation parameters. PEEP was significantly higher in those with CAP on the first day of admission (p=0.002). There was no difference in mortality (p=0.61) between the groups. CONCLUSIONS: Patients admission to the ICU with CAP had less comorbidity than those with IAP. Patients with CAP had poorer ventilatory parameters patterns, requiring more aggressive ventilation and ECMO support. The overall mortality did not differ significantly between the groups.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Pneumonia , Humans , Retrospective Studies , Influenza, Human/epidemiology , Influenza, Human/therapy , COVID-19/therapy , Seasons , Intensive Care Units
3.
J Infect Chemother ; 28(11): 1489-1493, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2036254

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has emerged as a global health problem, associated with high morbidity and mortality rates. The aim of this study was to compare the outcomes of hospitalized patients with COVID-19 or with seasonal influenza in a teaching hospital in Belgium. METHODS: In this retrospective, single-center cohort study, 1384 patients with COVID-19 and 226 patients with influenza were matched using a propensity score with a ratio of 3:1. Primary outcomes included admission to intensive care unit (ICU), intubation rates, hospital length of stay, readmissions within 30 days and in-hospital mortality. Secondary outcomes included pulmonary bacterial superinfection, cardiovascular complications and ECMO. RESULTS: Based on the analysis of the matched sample, patients with influenza had an increased risk of readmission within 30 days (Risk Difference (RD): 0.07, 95% CI: 0.03 to 0.11) and admission to intensive care unit (RD: 0.09, 95% CI: 0.03 to 0.15) compared with those with COVID-19. Patients with influenza had also more pulmonary bacterial superinfections (46.2% vs 7.4%) and more cardiovascular complications (32% vs 3.9%) than patients with COVID-19.However, a two-fold increased risk of mortality (RD: -0.10, 95% CI: 0.15 to -0.05) was observed in COVID-19 compared to influenza. ECMO was also more required among the COVID-19 patients who died than among influenza patients (5% vs 0%). CONCLUSIONS: COVID-19 is associated with a higher in-hospital mortality compared to influenza infection, despite a high rate of ICU admission in the influenza group. These findings highlighted that the severity of hospitalized patients with influenza should not be underestimated.


Subject(s)
COVID-19 , Influenza, Human , Belgium/epidemiology , COVID-19/epidemiology , Cohort Studies , Hospital Mortality , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Influenza, Human/therapy , Intensive Care Units , Pandemics , Retrospective Studies , Tertiary Care Centers
4.
J Interferon Cytokine Res ; 42(8): 369-392, 2022 08.
Article in English | MEDLINE | ID: covidwho-1992067

ABSTRACT

Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.


Subject(s)
COVID-19 , Influenza, Human , Cytokine Release Syndrome , Humans , Influenza, Human/epidemiology , Influenza, Human/therapy , Pandemics , SARS-CoV-2
5.
PLoS One ; 17(7): e0270814, 2022.
Article in English | MEDLINE | ID: covidwho-1919122

ABSTRACT

INTRODUCTION: Influenza A virus infection is a contagious acute respiratory infection which mostly evolves in an epidemic form, less frequently as pandemic outbreaks. It can take a severe clinical form that needs to be managed in intensive care unit (ICU). The aim of this study was to describe the epidemiological and clinical aspects of influenza A, then to determine independent predictive factors of ICU mortality in Abderrahmen Mami hospital, Ariana, Tunisia. METHODS: It was a single-center study, including all hospitalized patients in intensive care, between November 1st, 2009 and October 31st, 2019, with influenza A virus infection. We recorded demographic, clinical and biological data, evolving features; then multivariate analysis of the predictive factors of ICU mortality was realized. RESULTS: During the study period (10 consecutive seasons), 120 patients having severe Influenza A were admitted (Proportion = 2.5%) from all hospitalized patients, with a median age of 48 years and a gender-ratio of 1.14. Among women, 14 were pregnant. Only 7 patients (5.8%) have had seasonal flu vaccine during the year before ICU admission. The median values of the Simplified Acute Physiology Score II, Acute Physiologic and Chronic Health Evaluation II and Sepsis-related Organ Failure Assessment were respectively 26, 10 and 3. Virus strains identified with polymerase chain reaction were H1N1 pdm09 (84.2%) and H3N2 (15.8%). Antiviral therapy was prescribed in 88 (73.3%) patients. A co-infection was recorded in 19 cases: bacterial (n = 17) and aspergillaire (n = 2). An acute respiratory distress syndrome (ARDS) was diagnosed in 82 patients. Non-invasive ventilation (NIV) was conducted for 72 (60%) patients with success in 34 cases. Endotracheal intubation was performed in 59 patients with median duration of invasive mechanical ventilation 8 [3.25-13] days. The most frequent complications were acute kidney injury (n = 50, 41.7%), shock (n = 48, 40%), hospital-acquired infections (n = 46, 38.8%) and thromboembolic events (n = 19, 15.8%). The overall ICU mortality rate was of 31.7% (deceased n = 38). Independent predictive factors of ICU mortality identified were: age above 56 years (OR = 7.417; IC95% [1.474-37.317]; p = 0.015), PaO2/FiO2 ≤ 95 mmHg (OR = 9.078; IC95% [1.636-50.363]; p = 0.012) and lymphocytes count ≤ 1.325 109/L (OR = 10.199; IC95% [1.550-67.101]; p = 0.016). CONCLUSION: Influenza A in ICU is not uncommon, even in A(H1N1) dominant seasons; its management is highly demanding. It is responsible for considerable morbi-mortality especially in elderly patients.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Aged , Female , Hospital Mortality , Humans , Influenza, Human/epidemiology , Influenza, Human/mortality , Influenza, Human/therapy , Influenza, Human/virology , Intensive Care Units , Male , Middle Aged , Noninvasive Ventilation , Patient Acuity , Pregnancy , Risk Factors , Tunisia/epidemiology
6.
Int J Artif Organs ; 45(7): 647-651, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1794151

ABSTRACT

At the beginning of the COVID 19 pandemic, the outcome of patients treated with ECMO was discouraging. Subsequently, it became clear that a certain group of patients may benefit from ECMO treatment. The primary objective of this study was to compare the outcome of ECMO treatment in COVID-19 and influenza patients referred to a tertiary care center. A total of 119 adult patients required ECMO treatment following ARDS secondary to H1N1 (49) and SARS-CoV-2 (70) in the referral ECMO Center based in Zagreb between October 2009 and October 2021. Our study revealed a significantly higher mortality in COVID-19 patients compared to H1N1 influenza when the onset of ARDS was severe enough to require ECMO support. Based on these results and current knowledge, we argue that ECMO treatment for ARDS in COVID-19 patients is more challenging compared to H1N1 influenza patients. Therefore, referral to the most experienced ECMO centers should be considered. Additionally, patient selection and timing for ECMO treatment play a key role in relation to outcome. Mortality rate in COVID-19 patients requiring ECMO treatment may be used as a reference frame for ECMO centers to ensure best possible care and outcome.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Influenza A Virus, H1N1 Subtype , Influenza, Human , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Humans , Influenza, Human/complications , Influenza, Human/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
7.
Ann Am Thorac Soc ; 17(7): 879-891, 2020 07.
Article in English | MEDLINE | ID: covidwho-679536

ABSTRACT

There is broad interest in improved methods to generate robust evidence regarding best practice, especially in settings where patient conditions are heterogenous and require multiple concomitant therapies. Here, we present the rationale and design of a large, international trial that combines features of adaptive platform trials with pragmatic point-of-care trials to determine best treatment strategies for patients admitted to an intensive care unit with severe community-acquired pneumonia. The trial uses a novel design, entitled "a randomized embedded multifactorial adaptive platform." The design has five key features: 1) randomization, allowing robust causal inference; 2) embedding of study procedures into routine care processes, facilitating enrollment, trial efficiency, and generalizability; 3) a multifactorial statistical model comparing multiple interventions across multiple patient subgroups; 4) response-adaptive randomization with preferential assignment to those interventions that appear most favorable; and 5) a platform structured to permit continuous, potentially perpetual enrollment beyond the evaluation of the initial treatments. The trial randomizes patients to multiple interventions within four treatment domains: antibiotics, antiviral therapy for influenza, host immunomodulation with extended macrolide therapy, and alternative corticosteroid regimens, representing 240 treatment regimens. The trial generates estimates of superiority, inferiority, and equivalence between regimens on the primary outcome of 90-day mortality, stratified by presence or absence of concomitant shock and proven or suspected influenza infection. The trial will also compare ventilatory and oxygenation strategies, and has capacity to address additional questions rapidly during pandemic respiratory infections. As of January 2020, REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) was approved and enrolling patients in 52 intensive care units in 13 countries on 3 continents. In February, it transitioned into pandemic mode with several design adaptations for coronavirus disease 2019. Lessons learned from the design and conduct of this trial should aid in dissemination of similar platform initiatives in other disease areas.Clinical trial registered with www.clinicaltrials.gov (NCT02735707).


Subject(s)
Community-Acquired Infections/therapy , Coronavirus Infections/therapy , Influenza, Human/therapy , Pneumonia, Viral/therapy , Pneumonia/therapy , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Evidence-Based Medicine , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2
10.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Article in English | MEDLINE | ID: covidwho-1065901

ABSTRACT

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , RNA, Messenger/pharmacology , SARS-CoV-2/genetics , Animals , COVID-19/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Cricetinae , Disease Models, Animal , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory System/drug effects , Respiratory System/metabolism , SARS-CoV-2/pathogenicity
11.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Article in English | MEDLINE | ID: covidwho-1062765

ABSTRACT

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , RNA, Messenger/pharmacology , SARS-CoV-2/genetics , Animals , COVID-19/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Cricetinae , Disease Models, Animal , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory System/drug effects , Respiratory System/metabolism , SARS-CoV-2/pathogenicity
12.
Ann Am Thorac Soc ; 18(8): 1380-1389, 2021 08.
Article in English | MEDLINE | ID: covidwho-999862

ABSTRACT

Rationale: Both 2009 pandemic influenza A (H1N1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted by respiratory secretions and in severe cases result in a viral pneumonitis, requiring intensive care unit (ICU) admission. However, no studies have compared the clinical characteristics and outcomes of such patients. Objectives: To report and compare the demographic characteristics, treatments, use of critical care resources, and outcomes of patients admitted to an Australian ICU with H1N1 influenza during the winter of 2009, and SARS-CoV-2 during the winter of 2020. Methods: This was a multicenter project, using national data from previous and ongoing epidemiological studies concerning severe acute respiratory infections in Australia. All ICUs admitting patients with H1N1 or coronavirus disease (COVID-19) were included and contributed data. We compared clinical characteristics and outcomes of patients with H1N1 admitted to ICU in the winter of 2009 versus patients with COVID-19 admitted to ICU in the winter of 2020. The primary outcome was in-hospital mortality. Potential years of life lost (PYLL) were calculated according to sex-adjusted life expectancy in Australia. Results: Across the two epochs, 861 patients were admitted to ICUs; 236 (27.4%) with COVID-19 and 625 (72.6%) with H1N1 influenza. The number of ICU admissions and bed-days occupied were higher with 2009 H1N1 influenza. Patients with COVID-19 were older, more often male and overweight, and had lower Acute Physiology and Chronic Health Evaluation II scores at ICU admission. The highest age-specific incidence of ICU admission was among infants (0-1 yr of age) for H1N1, and among the elderly (≥65 yr) for COVID-19. Unadjusted in-hospital mortality was similar (11.5% in COVID-19 vs. 16.1% in H1N1; odds ratio, 0.68 [95% confidence interval (95% CI), 0.42-1.06]; P = 0.10). The PYLL was greater with H1N1 influenza than with COVID-19 at 154.1 (95% CI, 148.7-159.4) versus 13.6 (95% CI, 12.2-15.1) PYLL per million inhabitants. Conclusions: In comparison with 2009 H1N1 influenza, COVID-19 admissions overwinter in Australia resulted in fewer ICU admissions, and lower bed-day occupancy. Crude in-hospital mortality was similar, but because of demographic differences in affected patients, deaths due to 2009 H1N1 influenza led to an 11-fold increase in the number of PYLL in critically ill patients.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Aged , Australia/epidemiology , Critical Care , Critical Illness , Humans , Infant , Influenza, Human/epidemiology , Influenza, Human/therapy , Intensive Care Units , Male , SARS-CoV-2
13.
Cochrane Database Syst Rev ; 12: CD013819, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-985902

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that causes coronavirus disease 2019 (COVID-19) can cause serious illness in some people resulting in admission to intensive care units (ICU) and frequently, ventilatory support for acute respiratory failure. Evaluating ICU care, and what is effective in improving outcomes for these patients is critical. Care bundles, a small set of evidence-based interventions, delivered together consistently, may improve patient outcomes. To identify the extent of the available evidence on the use of care bundles in patients with COVID-19 in the ICU, the World Health Organization (WHO) commissioned a scoping review to inform WHO guideline discussions. This review does not assess the effectiveness of the findings, assess risk of bias, or assess the certainty of the evidence (GRADE). As this review was commissioned to inform guideline discussions, it was done rapidly over a three-week period from 26 October to 18 November 2020. OBJECTIVES: To identify and describe the available evidence on the use of care bundles in the ICU for patients with COVID-19 or related conditions (acute respiratory distress syndrome (ARDS) viral pneumonia or pneumonitis), or both. In carrying out the review the focus was on characterising the evidence base and not evaluating the effectiveness or safety of the care bundles or their component parts. SEARCH METHODS: We searched MEDLINE, Embase, the Cochrane Library (CENTRAL and the Cochrane COVID-19 Study Register) and the WHO International Clinical Trials Registry Platform on 26 October 2020. SELECTION CRITERIA: Studies of all designs that reported on patients who are critically ill with COVID-19, ARDS, viral pneumonia or pneumonitis, in the ICU setting, where a care bundle was implemented in providing care, were eligible for inclusion. One review author (VS) screened all records on title and abstract. A second review author (DR) checked 20% of excluded and included records; agreement was 99.4% and 100% respectively on exclude/include decisions. Two review authors (VS and DR) independently screened all records at full-text level. VS and DR resolved any disagreements through discussion and consensus, or referral to a third review author (AN) as required. DATA COLLECTION AND ANALYSIS: One review author (VS) extracted the data and a second review author (DR) checked 20% of this for accuracy. As the review was not designed to synthesise effectiveness data, assess risk of bias, or characterise the certainty of the evidence (GRADE), we mapped the extracted data and presented them in tabular format based on the patient condition; that is patients with confirmed or suspected COVID-19, patients with ARDS, patients with any influenza or viral pneumonia, patients with severe respiratory failure, and patients with mixed conditions. We have also provided a narrative summary of the findings from the included studies. MAIN RESULTS: We included 21 studies and identified three ongoing studies. The studies were of variable designs and included a systematic review of standardised approaches to caring for critically ill patients in ICU, including but not exclusive to care bundles (1 study), a randomised trial (1 study), prospective and retrospective cohort studies (4 studies), before and after studies (7 studies), observational quality improvement reports (4 studies), case series/case reports (3 studies) and audit (1 study). The studies were conducted in eight countries, most commonly China (5 studies) and the USA (4 studies), were published between 1999 and 2020, and involved over 2000 participants in total. Studies categorised participant conditions patients with confirmed or suspected COVID-19 (7 studies), patients with ARDS (7 studies), patients with another influenza or viral pneumonia (5 studies), patients with severe respiratory failure (1 study), and patients with mixed conditions (1 study). The care bundles described in the studies involved multiple diverse practices. Guidance on ventilator settings (10 studies), restrictive fluid management (8 studies), sedation (7 studies) and prone positioning (7 studies) were identified most frequently, while only one study mentioned chest X-ray. None of the included studies reported the prespecified outcomes ICU-acquired weakness (muscle wasting, weight loss) and users' experience adapting care bundles. Of the remaining prespecified outcomes, 14 studies reported death in ICU, nine reported days of ventilation (or ventilator-free days), nine reported length of stay in ICU in days, five reported death in hospital, three reported length of stay in hospital in days, and three reported adherence to the bundle. AUTHORS' CONCLUSIONS: This scoping review has identified 21 studies on care bundle use in critically ill patients in ICU with COVID-19, ARDS, viral influenza or pneumonia and severe respiratory failure. The data for patients with COVID-19 specifically are limited, derived mainly from observational quality improvement or clinical experiential accounts. Research is required, urgently, to further assess care bundle use and optimal components of these bundles in this patient cohort. The care bundles described were also varied, with guidance on ventilator settings described in 10 care bundles, while chest X-ray was part mentioned in one care bundle in one study only. None of the studies identified in this scoping review measured users' experience of adapting care bundles. Optimising care bundle implementation requires that the components of the care bundle are collectively and consistently applied. Data on challenges, barriers and facilitators to implementation are needed. A formal synthesis of the outcome data presented in this review and a critical appraisal of the evidence is required by a subsequent effectiveness review. This subsequent review should further explore effect estimates across the included studies.


Subject(s)
COVID-19/therapy , Critical Care , Patient Care Bundles/methods , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Humans , Influenza, Human/therapy , Intensive Care Units , Pandemics , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Treatment Outcome
14.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Symbiosis/immunology
15.
Pathog Glob Health ; 115(2): 93-99, 2021 03.
Article in English | MEDLINE | ID: covidwho-977347

ABSTRACT

Following the announcement of coronavirus disease 2019 (COVID-19) cases in Wuhan on 31 December 2019, government officials in Hong Kong recommended the wearing of face masks as a public infection control measure against the COVID-19 virus and curtail the impact of the concurrent influenza season. The present study evaluated the influenza-related outcomes between the influenza season 2019 and 2020 in Hong Kong as a result of these infection control measures. A Monte Carlo simulation model was designed to estimate the number of influenza cases, clinic visits, hospitalization, deaths, direct medical cost and disability-adjusted life-years (DALYs) for the season 2018-2019 and 2019-2020 in six age groups: 0-5 years, 6-11 years, 12-17 years, 18-49 years, 50-64 years and ≥65 years in Hong Kong. Model inputs were derived from public data and existing literature. The model findings showed significant reduction in influenza-related cases, clinic visits, hospitalization, and deaths in 2020 versus 2019 (p < 0.05). Influenza-related direct costs in all age-groups were significantly reduced by 56%-82% (p < 0.01) in 2020 versus 2019. DALYs were also significantly decreased by 58%-85% (p < 0.01). The direct cost and DALYs avoided in 2020 was the highest among the age group of 0-5 years with a cost-saving of USD593,763 (95%CI 590,730-596,796) per 10,000 population and a DALY reduction of 57.67 (95%CI 57.54-57.83) per 10,000 population. This study illustrated the reduction of all influenza-related outcome measures in Hong Kong as a result of the implementation of public infection control measures against COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Influenza, Human/epidemiology , Adolescent , Adult , Aged , COVID-19/complications , Child , Child, Preschool , Health Care Costs , Hong Kong/epidemiology , Humans , Infant , Infection Control/methods , Influenza, Human/therapy , Middle Aged , Monte Carlo Method , Quality-Adjusted Life Years , Treatment Outcome , Young Adult
16.
Int J Infect Dis ; 103: 316-322, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-959851

ABSTRACT

OBJECTIVES: Since the beginning of the severe acute respiratory syndrome coronavirus 2 pandemic, there is a discussion about the severity of coronavirus disease-2019 (COVID-19) in comparison to infections with seasonal Influenza. The objective of this study was to compare clinical and demographic characteristics of German patients hospitalized for infection with either SARS-CoV-2 or Influenza. METHODS: This study used anonymized German healthcare claims data. Patients with a confirmed COVID-19 or Influenza diagnosis, for whom a complete hospital course was available (i.e., the patient was discharged or died in hospital) were included. The data set included detailed information on patient characteristics and hospital treatment. Patients were grouped according to whether they were transferred to the intensive care unit (ICU), received mechanical ventilation (MV), or had a severe course of the disease (SD). Charlson Comorbidity Index in the eight quarters prior to hospitalization and secondary diagnoses during hospitalization were analyzed. RESULTS: A total of 2343 hospitalized patients with COVID-19 and 6762 hospitalized patients with Influenza were included. Fifty-four percent of the patients were male patients, with men being twice as frequent in the COVID-19 severe groups. For both diseases, patients >49 years accounted for almost three-quarters of hospital cases and hypertension, diabetes mellitus, chronic kidney disease, and chronic obstructive pulmonary disease were the most common comorbidities. The proportion of cases with ICU, MV, and SD was substantially higher for patients with COVID-19 (ICU+: 21 vs. 13 %; MV+: 15 vs. 9%; and SD+: 28 vs. 16%). Overall inhospital mortality was more than two-fold higher in COVID-19 vs. Influenza (14 vs. 6%).). The length of ventilation and hospitalization, and the proportion of patients diagnosed with acute respiratory distress syndrome, systemic inflammatory response syndrome, or acute kidney injury were considerably higher in patients with COVID-19. CONCLUSIONS: COVID-19 resulted in higher inhospital mortality and worse clinical outcomes than Influenza. This was not attributable to demographic characteristics, preexisting comorbidities, or patient triage, because the German healthcare system had not reached its limits in the pandemic. Discussions suggesting that COVID-19 and seasonal Influenza have similar severity cannot be based on clinical evidence.


Subject(s)
COVID-19/mortality , Influenza, Human/mortality , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , COVID-19/therapy , Comorbidity , Female , Germany , Hospital Mortality , Hospitalization , Humans , Influenza, Human/physiopathology , Influenza, Human/therapy , Male , Middle Aged , Pandemics , SARS-CoV-2 , Treatment Outcome
17.
Br J Anaesth ; 125(6): 1002-1017, 2020 12.
Article in English | MEDLINE | ID: covidwho-927485

ABSTRACT

The emergence of highly pathogenic strains of influenza virus and coronavirus (CoV) has been responsible for large epidemic and pandemic outbreaks characterised by severe pulmonary illness associated with high morbidity and mortality. One major challenge for critical care is to stratify and minimise the risk of multi-organ failure during the stay in the intensive care unit (ICU). Epigenetic-sensitive mechanisms, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) methylation, histone modifications, and non-coding RNAs may lead to perturbations of the host immune-related transcriptional programmes by regulating chromatin structure and gene expression patterns. Viruses causing severe pulmonary illness can use epigenetic-regulated mechanisms during host-pathogen interaction to interfere with innate and adaptive immunity, adequacy of inflammatory response, and overall outcome of viral infections. For example, Middle East respiratory syndrome-CoV and H5N1 can affect host antigen presentation through DNA methylation and histone modifications. The same mechanisms would presumably occur in patients with coronavirus disease 2019, in which tocilizumab may epigenetically reduce microvascular damage. Targeting epigenetic pathways by immune modulators (e.g. tocilizumab) or repurposed drugs (e.g. statins) may provide novel therapeutic opportunities to control viral-host interaction during critical illness. In this review, we provide an update on epigenetic-sensitive mechanisms and repurposed drugs interfering with epigenetic pathways which may be clinically suitable for risk stratification and beneficial for treatment of patients affected by severe viral respiratory infections.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/therapy , Epigenesis, Genetic , Genetic Predisposition to Disease/genetics , Influenza, Human/genetics , Influenza, Human/therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/therapy , Respiratory Tract Infections/genetics , Respiratory Tract Infections/therapy , Betacoronavirus/genetics , COVID-19 , Humans , Pandemics , SARS-CoV-2
18.
Medicine (Baltimore) ; 99(44): e23064, 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-894700

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the most important global public health issue that we currently face. We aimed to explore the clinical features of patients with COVID-19 and compared them with those of hospitalized community-acquired pneumonia (CAP) patients caused by influenza virus during the same period.From Jan 1, to Mar 4, 2020, patients with COVID-19 or CAP caused by influenza virus who were admitted to the First Affiliated Hospital of Xiamen University were consecutively screened for enrollment.A total of 35 COVID-19 patients and 22 CAP patients caused by influenza virus were included in this study. Most of COVID-19 patients had characteristics of familial clustering (63%), however, in the other group, there was no similar finding. The percentages of patients with a high fever (the highest recorded temperature was ≥39.0°C; 11% vs 45% [COVID-19 vs CAP groups, respectively]), dyspnea (9% vs 59%), leukocytosis (3% vs 32%), elevated C-reactive protein concentrations (>10 mg/L, 48% vs 86%), elevated procalcitonin levels (>0.1 ng/ml, 15% vs 73%), PaO2/FiO2 <200 mm Hg (4% vs 22%), and infiltration on imaging (29% vs 68%) in the COVID-19 group were less than those same indices in the hospitalized CAP patients caused by influenza virus. Ground-glass opacity with reticular pattern (63%) and interlobular septal thickening (71%) in chest CT were commonly observed in the COVID-19 group.COVID-19 and CAP caused by influenza virus appear to share some similarities in clinical manifestaions but they definitely have major distinctions. Influenza infection remains a health problem even during COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19 , China/epidemiology , Community-Acquired Infections , Coronavirus Infections/blood , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Cross-Sectional Studies , Female , Humans , Influenza, Human/blood , Influenza, Human/diagnostic imaging , Influenza, Human/therapy , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/therapy , Radiography, Thoracic , Retrospective Studies , COVID-19 Drug Treatment
19.
MMWR Morb Mortal Wkly Rep ; 69(42): 1528-1534, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-890759

ABSTRACT

Coronavirus disease 2019 (COVID-19) is primarily a respiratory illness, although increasing evidence indicates that infection with SARS-CoV-2, the virus that causes COVID-19, can affect multiple organ systems (1). Data that examine all in-hospital complications of COVID-19 and that compare these complications with those associated with other viral respiratory pathogens, such as influenza, are lacking. To assess complications of COVID-19 and influenza, electronic health records (EHRs) from 3,948 hospitalized patients with COVID-19 (March 1-May 31, 2020) and 5,453 hospitalized patients with influenza (October 1, 2018-February 1, 2020) from the national Veterans Health Administration (VHA), the largest integrated health care system in the United States,* were analyzed. Using International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes, complications in patients with laboratory-confirmed COVID-19 were compared with those in patients with influenza. Risk ratios were calculated and adjusted for age, sex, race/ethnicity, and underlying medical conditions; proportions of complications were stratified among patients with COVID-19 by race/ethnicity. Patients with COVID-19 had almost 19 times the risk for acute respiratory distress syndrome (ARDS) than did patients with influenza, (adjusted risk ratio [aRR] = 18.60; 95% confidence interval [CI] = 12.40-28.00), and more than twice the risk for myocarditis (2.56; 1.17-5.59), deep vein thrombosis (2.81; 2.04-3.87), pulmonary embolism (2.10; 1.53-2.89), intracranial hemorrhage (2.85; 1.35-6.03), acute hepatitis/liver failure (3.13; 1.92-5.10), bacteremia (2.46; 1.91-3.18), and pressure ulcers (2.65; 2.14-3.27). The risks for exacerbations of asthma (0.27; 0.16-0.44) and chronic obstructive pulmonary disease (COPD) (0.37; 0.32-0.42) were lower among patients with COVID-19 than among those with influenza. The percentage of COVID-19 patients who died while hospitalized (21.0%) was more than five times that of influenza patients (3.8%), and the duration of hospitalization was almost three times longer for COVID-19 patients. Among patients with COVID-19, the risk for respiratory, neurologic, and renal complications, and sepsis was higher among non-Hispanic Black or African American (Black) patients, patients of other races, and Hispanic or Latino (Hispanic) patients compared with those in non-Hispanic White (White) patients, even after adjusting for age and underlying medical conditions. These findings highlight the higher risk for most complications associated with COVID-19 compared with influenza and might aid clinicians and researchers in recognizing, monitoring, and managing the spectrum of COVID-19 manifestations. The higher risk for certain complications among racial and ethnic minority patients provides further evidence that certain racial and ethnic minority groups are disproportionally affected by COVID-19 and that this disparity is not solely accounted for by age and underlying medical conditions.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/therapy , Hospitalization , Influenza, Human/complications , Influenza, Human/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Aged , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/ethnology , Female , Health Status Disparities , Hospital Mortality/trends , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/ethnology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/virology , Risk Assessment , United States/epidemiology , United States Department of Veterans Affairs
20.
Nat Rev Cardiol ; 18(3): 169-193, 2021 03.
Article in English | MEDLINE | ID: covidwho-851285

ABSTRACT

Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.


Subject(s)
Cardiomyopathies/physiopathology , Inflammation/physiopathology , Myocarditis/physiopathology , Virus Diseases/physiopathology , Animals , Antiviral Agents/therapeutic use , Autoimmunity/immunology , Biopsy , COVID-19/physiopathology , COVID-19/therapy , Cardiomyopathies/diagnosis , Cardiomyopathies/immunology , Cardiomyopathies/therapy , Cardiomyopathy, Dilated , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Coxsackievirus Infections/immunology , Coxsackievirus Infections/physiopathology , Coxsackievirus Infections/therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/therapy , Disease Models, Animal , Echovirus Infections/immunology , Echovirus Infections/physiopathology , Echovirus Infections/therapy , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/physiopathology , Epstein-Barr Virus Infections/therapy , Erythema Infectiosum/immunology , Erythema Infectiosum/physiopathology , Erythema Infectiosum/therapy , HIV Infections/physiopathology , Hepatitis C/immunology , Hepatitis C/physiopathology , Hepatitis C/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Inflammation/diagnosis , Inflammation/immunology , Inflammation/therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Influenza, Human/therapy , Leukocytes/immunology , Myocarditis/diagnosis , Myocarditis/immunology , Myocarditis/therapy , Myocardium/pathology , Prognosis , Roseolovirus Infections/immunology , Roseolovirus Infections/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL