Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
2.
Viruses ; 14(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1674820

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to have a significant impact on global public health. Multiple mechanisms for SARS-CoV-2 cell entry have been described; however, the role of transferrin receptor 1 (TfR1) in SARS-CoV-2 infection has received little attention. We used ferristatin II to induce the degradation of TfR1 on the surface of Vero cells and to study the consequences of such treatment on the viability of the cells and the replication of SARS-CoV-2. We demonstrated that ferristatin II is non-toxic for Vero cells in concentrations up to 400 µM. According to confocal microscopy data, the distribution of the labeled transferrin and receptor-binding domain (RBD) of Spike protein is significantly affected by the 18h pretreatment with 100 µM ferristatin II in culture medium. The uptake of RBD protein is nearly fully inhibited by ferristatin II treatment, although this protein remains bound on the cell surface. The findings were well confirmed by the significant inhibition of the SARS-CoV-2 infection of Vero cells by ferristatin II with IC50 values of 27 µM (for Wuhan D614G virus) and 40 µM (for Delta virus). A significant reduction in the infectious titer of the Omicron SARS-CoV-2 variant was noted at a ferristatin II concentration as low as 6.25 µM. We hypothesize that ferristatin II blocks the TfR1-mediated SARS-CoV-2 host cell entry; however, further studies are needed to elucidate the full mechanisms of this virus inhibition, including the effect of ferristatin II on other SARS-CoV-2 receptors, such as ACE2, Neuropilin-1 and CD147. The inhibition of viral entry by targeting the receptor on the host cells, rather than the viral mutation-prone protein, is a promising COVID-19 therapeutic strategy.


Subject(s)
Biphenyl Compounds/pharmacology , SARS-CoV-2/drug effects , Sulfones/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Inhibitory Concentration 50 , Protein Binding , Protein Domains , Receptors, Transferrin/antagonists & inhibitors , Vero Cells
3.
Nature ; 602(7898): 676-681, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616993

ABSTRACT

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Immune Evasion/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Evolution, Molecular , Humans , Immune Sera/immunology , Inhibitory Concentration 50 , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
SAR QSAR Environ Res ; 32(11): 863-888, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1606722

ABSTRACT

The novel severe acute respiratory syndrome coronavirus (SARS CoV-2) was introduced as an epidemic in 2019 and had millions of deaths worldwide. Given the importance of this disease, the recommendation and design of new active compounds are crucial. 3-chymotrypsin-like protease (3 CLpro) inhibitors have been identified as potent compounds for treating SARS-CoV-2 disease. So, the design of new 3 CLpro inhibitors was proposed using a quantitative structure-activity relationship (QSAR) study. In this context, a powerful adaptive least absolute shrinkage and selection operator (ALASSO) penalized variable selection method with inherent advantages coupled with a nonlinear artificial neural network (ANN) modelling method were used to provide a QSAR model with high interpretability and predictability. After evaluating the accuracy and validity of the developed ALASSO-ANN model, new compounds were proposed using effective descriptors, and the biological activity of the new compounds was predicted. Ligand-receptor (LR) interactions were also performed to confirm the interaction strength of the compounds using molecular docking (MD) study. The pharmacokinetics properties and calculated Lipinski's rule of five were applied to all proposed compounds. Due to the ease of synthesis of these suggested new compounds, it is expected that they have acceptable pharmacological properties.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/pharmacokinetics , Coronavirus 3C Proteases/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Neural Networks, Computer , Protease Inhibitors/pharmacokinetics , Quantitative Structure-Activity Relationship , Reproducibility of Results , SARS-CoV-2/enzymology
5.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1606194

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Subject(s)
Aniline Compounds/chemistry , Antiviral Agents/metabolism , Benzamides/chemistry , Coronavirus Papain-Like Proteases/metabolism , Drug Design , Naphthalenes/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Papain-Like Proteases/chemistry , Cytokines/chemistry , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Naphthalenes/metabolism , Naphthalenes/pharmacology , SARS-CoV-2/isolation & purification , Ubiquitins/chemistry
6.
Cell Chem Biol ; 28(12): 1795-1806.e5, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1599513

ABSTRACT

Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found âˆ¼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 µM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Acrylamide/chemistry , Acrylamide/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Computational Biology/methods , Databases, Protein , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
7.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1580698

ABSTRACT

In this review, we collected 1765 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M-pro inhibitors from the bibliography and other sources, such as the COVID Moonshot project and the ChEMBL database. This set of inhibitors includes only those compounds whose inhibitory capacity, mainly expressed as the half-maximal inhibitory concentration (IC50) value, against M-pro from SARS-CoV-2 has been determined. Several covalent warheads are used to treat covalent and non-covalent inhibitors separately. Chemical space, the variation of the IC50 inhibitory activity when measured by different methods or laboratories, and the influence of 1,4-dithiothreitol (DTT) are discussed. When available, we have collected the values of inhibition of viral replication measured with a cellular antiviral assay and expressed as half maximal effective concentration (EC50) values, and their possible relationship to inhibitory potency against M-pro is analyzed. Finally, the most potent covalent and non-covalent inhibitors that simultaneously inhibit the SARS-CoV-2 M-pro and the virus replication in vitro are discussed.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/chemistry , Databases, Pharmaceutical , Enzyme Assays/methods , Inhibitory Concentration 50 , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Virus Replication/drug effects
8.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1559466

ABSTRACT

Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/chemistry , Agammaglobulinaemia Tyrosine Kinase/classification , Animals , B-Lymphocytes/metabolism , Humans , Inhibitory Concentration 50 , Treatment Outcome
9.
PLoS One ; 16(12): e0260958, 2021.
Article in English | MEDLINE | ID: covidwho-1546973

ABSTRACT

SARS-CoV-2 variants are emerging with potential increased transmissibility highlighting the great unmet medical need for new therapies. Niclosamide is a potent anti-SARS-CoV-2 agent that has advanced in clinical development. We validate the potent antiviral efficacy of niclosamide in a SARS-CoV-2 human airway model. Furthermore, niclosamide remains its potency against the D614G, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. Our data further support the potent anti-SARS-CoV-2 properties of niclosamide and highlights its great potential as a therapeutic agent for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Niclosamide/therapeutic use , SARS-CoV-2/drug effects , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Inhibitory Concentration 50 , Respiratory Mucosa/virology , Vero Cells
10.
Eur J Pharmacol ; 913: 174632, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1509762

ABSTRACT

Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of µM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the ß-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.


Subject(s)
Antiviral Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Chloroquine/pharmacology , Hydroxychloroquine/adverse effects , Action Potentials/drug effects , Biological Assay , COVID-19/drug therapy , Computer Simulation , Correlation of Data , Dose-Response Relationship, Drug , ERG1 Potassium Channel/agonists , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , KCNQ1 Potassium Channel/antagonists & inhibitors , KCNQ1 Potassium Channel/metabolism , Kinetics , Myocytes, Cardiac/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Voltage-Gated/metabolism , Risk Assessment , SARS-CoV-2/drug effects
11.
Bioorg Chem ; 117: 105466, 2021 12.
Article in English | MEDLINE | ID: covidwho-1499653

ABSTRACT

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Aspirin/chemistry , Curcumin/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
12.
J Ethnopharmacol ; 284: 114797, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1487836

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: For millennia, Artemisia annua L. was used in Southeast Asia to treat "fever". This medicinal plant is effective against multiple pathogens and is used by many global communities as a source of artemisinin derivatives that are first-line drugs to treat malaria caused by Plasmodium parasites. AIM OF THE STUDY: The SARS-CoV-2 (Covid-19) global pandemic has killed millions and evolved numerous variants, with delta being the most transmissible to date and causing break-through infections of vaccinated individuals. We further queried the efficacy of A. annua cultivars against new variants. MATERIALS AND METHODS: Using Vero E6 cells, we measured anti-SARS-CoV-2 activity of dried-leaf hot-water A. annua L. extracts of four cultivars, A3, BUR, MED, and SAM, to determine their efficacy against five infectious variants of the virus: alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), and kappa (B.1.617.1). RESULTS: In addition to being effective against the original wild type (WT) WA1, A. annua cultivars A3, BUR, MED, and SAM were also potent against all five variants. IC50 and IC90 values based on measured artemisinin content ranged from 0.3 to 8.4 µM and 1.4-25.0 µM, respectively. The IC50 and IC90 values based on dried leaf weight (DW) used to make the tea infusions ranged from 11.0 to 67.7 µg DW and 59.5-160.6 µg DW, respectively. Cell toxicity was insignificant at a leaf dry weight of ≤50 µg in the extract of any cultivar. CONCLUSIONS: Results suggest that oral consumption of A. annua hot-water extracts (tea infusions) could potentially provide a cost-effective therapy to help stave off the rapid global spread of these variants, buying time for broader implementation of vaccines.


Subject(s)
Antiviral Agents/pharmacology , Artemisia annua/chemistry , COVID-19/virology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Inhibitory Concentration 50 , Plant Extracts/chemistry , Vero Cells
13.
J Virol ; 95(24): e0143721, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1434897

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 19 (COVID-19) pandemic. Despite unprecedented research and developmental efforts, SARS-CoV-2-specific antivirals are still unavailable for the treatment of COVID-19. In most instances, SARS-CoV-2 infection initiates with the binding of Spike glycoprotein to the host cell ACE2 receptor. Utilizing the crystal structure of the ACE2/Spike receptor-binding domain (S-RBD) complex (PDB file 6M0J) in a computer-aided drug design approach, we identified and validated five potential inhibitors of S-RBD and ACE-2 interaction. Two of the five compounds, MU-UNMC-1 and MU-UNMC-2, blocked the entry of pseudovirus particles expressing SARS-CoV-2 Spike glycoprotein. In live SARS-CoV-2 infection assays, both compounds showed antiviral activity with IC50 values in the micromolar range (MU-UNMC-1: IC50 = 0.67 µM and MU-UNMC-2: IC50 = 1.72 µM) in human bronchial epithelial cells. Furthermore, MU-UNMC-1 and MU-UNMC-2 effectively blocked the replication of rapidly transmitting variants of concern: South African variant B.1.351 (IC50 = 9.27 and 3.00 µM) and Scotland variant B.1.222 (IC50 = 2.64 and 1.39 µM), respectively. Following these assays, we conducted "induced-fit (flexible) docking" to understand the binding mode of MU-UNMC-1/MU-UNMC-2 at the S-RBD/ACE2 interface. Our data showed that mutation N501Y (present in B.1.351 variant) alters the binding mode of MU-UNMC-2 such that it is partially exposed to the solvent and has reduced polar contacts. Finally, MU-UNMC-2 displayed high synergy with remdesivir, the only approved drug for treating hospitalized COVID-19 patients. IMPORTANCE The ongoing coronavirus infectious disease 2019 (COVID-19) pandemic is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 207 million people have been infected globally, and 4.3 million have died due to this viral outbreak. While a few vaccines have been deployed, a SARS-CoV-2-specific antiviral for the treatment of COVID-19 is yet to be approved. As the interaction of SARS-CoV-2 Spike protein with ACE2 is critical for cellular entry, using a combination of a computer-aided drug design (CADD) approach and cell-based in vitro assays, we report the identification of five potential SARS-CoV-2 entry inhibitors. Out of the five, two compounds (MU-UNMC-1 and MU-UNMC-2) have antiviral activity against ancestral SARS-CoV-2 and emerging variants from South Africa and Scotland. Furthermore, MU-UNMC-2 acts synergistically with remdesivir (RDV), suggesting that RDV and MU-UNMC-2 can be developed as a combination therapy to treat COVID-19 patients.


Subject(s)
COVID-19/drug therapy , COVID-19/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Chemistry, Pharmaceutical/methods , Chlorocebus aethiops , Computer Simulation , Drug Design , HEK293 Cells , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus , Vero Cells
14.
Mini Rev Med Chem ; 22(3): 457-483, 2022.
Article in English | MEDLINE | ID: covidwho-1399062

ABSTRACT

Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome) was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we reviewed 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


Subject(s)
Antiviral Agents/pharmacology , Phytochemicals/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/drug therapy , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phytochemicals/chemistry
15.
Molecules ; 26(11)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1383891

ABSTRACT

This paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds. For all the samples obtained, the molecular-weight characteristics are calculated, based on which the optimal condensation conditions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt against the SARS-CoV-2 virus is confirmed.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Guanidines/chemical synthesis , Guanidines/pharmacology , Microfluidics/methods , SARS-CoV-2/drug effects , Animals , COVID-19 , Carbon-13 Magnetic Resonance Spectroscopy , Chlorocebus aethiops , Inhibitory Concentration 50 , Spectrometry, Mass, Electrospray Ionization , Vero Cells
16.
Sci Rep ; 11(1): 2229, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1387461

ABSTRACT

The development of specific antiviral compounds to SARS-CoV-2 is an urgent task. One of the obstacles for the antiviral development is the requirement of biocontainment because infectious SARS-CoV-2 must be handled in a biosafety level-3 laboratory. Replicon, a non-infectious self-replicative viral RNA, could be a safe and effective tool for antiviral evaluation. Herein, we generated a PCR-based SARS-CoV-2 replicon. Eight fragments covering the entire SARS-CoV-2 genome except S, E, and M genes were amplified with HiBiT-tag sequence by PCR. The amplicons were ligated and in vitro transcribed to RNA. The cells electroporated with the replicon RNA showed more than 3000 times higher luminescence than MOCK control cells at 24 h post-electroporation, indicating robust translation and RNA replication of the replicon. The replication was drastically inhibited by remdesivir, an RNA polymerase inhibitor for SARS-CoV-2. The IC50 of remdesivir in this study was 0.29 µM, generally consistent to the IC50 obtained using infectious SARS-CoV-2 in a previous study (0.77 µM). Taken together, this system could be applied to the safe and effective antiviral evaluation without using infectious SARS-CoV-2. Because this is a PCR-based and transient replicon system, further improvement including the establishment of stable cell line must be achieved.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , CHO Cells , COVID-19 , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Electroporation , Genome, Viral , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Open Reading Frames , Polymerase Chain Reaction , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2/physiology , Untranslated Regions , Vero Cells , Virion , Virus Replication/drug effects
17.
mBio ; 11(6)2020 12 11.
Article in English | MEDLINE | ID: covidwho-1388458

ABSTRACT

SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as the primary receptor to enter host cells and initiate the infection. The critical binding region of ACE2 is an ∼30-amino-acid (aa)-long helix. Here, we report the design of four stapled peptides based on the ACE2 helix, which is expected to bind to SARS-CoV-2 and prevent the binding of the virus to the ACE2 receptor and disrupt the infection. All stapled peptides showed high helical contents (50 to 94% helicity). In contrast, the linear control peptide NYBSP-C showed no helicity (19%). We have evaluated the peptides in a pseudovirus-based single-cycle assay in HT1080/ACE2 cells and human lung cell line A549/ACE2, overexpressing ACE2. Three of the four stapled peptides showed potent antiviral activity in HT1080/ACE2 (50% inhibitory concentration [IC50]: 1.9 to 4.1 µM) and A549/ACE2 (IC50: 2.2 to 2.8 µM) cells. The linear peptide NYBSP-C and the double-stapled peptide StRIP16, used as controls, showed no antiviral activity. Most significantly, none of the stapled peptides show any cytotoxicity at the highest dose tested. We also evaluated the antiviral activity of the peptides by infecting Vero E6 cells with the replication-competent authentic SARS-CoV-2 (US_WA-1/2020). NYBSP-1 was the most efficient, preventing the complete formation of cytopathic effects (CPEs) at an IC100 of 17.2 µM. NYBSP-2 and NYBSP-4 also prevented the formation of the virus-induced CPE with an IC100 of about 33 µM. We determined the proteolytic stability of one of the most active stapled peptides, NYBSP-4, in human plasma, which showed a half-life (T1/2) of >289 min.IMPORTANCE SARS-CoV-2 is a novel virus with many unknowns. No vaccine or specific therapy is available yet to prevent and treat this deadly virus. Therefore, there is an urgent need to develop novel therapeutics. Structural studies revealed critical interactions between the binding site helix of the ACE2 receptor and SARS-CoV-2 receptor-binding domain (RBD). Therefore, targeting the entry pathway of SARS-CoV-2 is ideal for both prevention and treatment as it blocks the first step of the viral life cycle. We report the design of four double-stapled peptides, three of which showed potent antiviral activity in HT1080/ACE2 cells and human lung carcinoma cells, A549/ACE2. Most significantly, the active stapled peptides with antiviral activity against SARS-CoV-2 showed high α-helicity (60 to 94%). The most active stapled peptide, NYBSP-4, showed substantial resistance to degradation by proteolytic enzymes in human plasma. The lead stapled peptides are expected to pave the way for further optimization of a clinical candidate.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Peptides/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Attachment/drug effects , A549 Cells , Animals , Binding Sites , Chlorocebus aethiops , Humans , Inhibitory Concentration 50 , Peptides/chemical synthesis , Protein Binding , Vero Cells
18.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387194
20.
Mar Drugs ; 19(8)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1376892

ABSTRACT

Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-ß-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKß) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aquatic Organisms/chemistry , Fucose/pharmacology , Galactose/pharmacology , Seaweed/chemistry , Animals , Inhibitory Concentration 50 , Mice , RAW 264.7 Cells/drug effects , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL