Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625612


Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.

Niclosamide/administration & dosage , Pneumonia/drug therapy , Respiratory System/drug effects , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , COVID-19/complications , COVID-19/drug therapy , Cells, Cultured , Disease Models, Animal , Drug Carriers/chemistry , Drug Compounding , Humans , Hydrogels/chemistry , Instillation, Drug , Mice , Microspheres , Mucus/drug effects , Mucus/metabolism , Nanospheres/administration & dosage , Nanospheres/chemistry , Niclosamide/chemistry , Niclosamide/pharmacokinetics , Pneumonia/pathology , Polyethylene Glycols/chemistry , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Trachea
BMC Pulm Med ; 21(1): 62, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1094030


BACKGROUND: The most important target cell of SARS-CoV-2 is Type II pneumocyte which produces and secretes pulmonary surfactant (PS) that prevents alveolar collapse. PS instillation therapy is dramatically effective for infant respiratory distress syndrome but has been clinically ineffective for ARDS. Nowadays, ARDS is regarded as non-cardiogenic pulmonary edema with vascular hyper-permeability regardless of direct relation to PS dysfunction. However, there is a possibility that this ineffectiveness of PS instillation for ARDS is caused by insufficient delivery. Then, we performed PS instillation simulation with realistic human airway models by the use of computational fluid dynamics, and investigated how instilled PS would move in the liquid layer covering the airway wall and reach to alveolar regions. METHODS: Two types of 3D human airway models were prepared: one was from the trachea to the lobular bronchi and the other was from a subsegmental bronchus to respiratory bronchioles. The thickness of the liquid layer covering the airway was assigned as 14 % of the inner radius of the airway segment. The liquid layer was assumed to be replaced by an instilled PS. The flow rate of the instilled PS was assigned a constant value, which was determined by the total amount and instillation time in clinical use. The PS concentration of the liquid layer during instillation was computed by solving the advective-diffusion equation. RESULTS: The driving pressure from the trachea to respiratory bronchioles was calculated at 317 cmH2O, which is about 20 times of a standard value in conventional PS instillation method where the driving pressure was given by difference between inspiratory and end-expiratory pressures of a ventilator. It means that almost all PS does not reach the alveolar regions but moves to and fro within the airway according to the change in ventilator pressure. The driving pressure from subsegmental bronchus was calculated at 273 cm H2O, that is clinically possible by wedge instillation under bronchoscopic observation. CONCLUSIONS: The simulation study has revealed that selective wedge instillation under bronchoscopic observation should be tried for COVID-19 pneumonia before the onset of ARDS. It will be also useful for preventing secondary lung fibrosis.

Bronchi/physiology , Bronchioles/physiology , COVID-19/drug therapy , Computer Simulation , Hydrodynamics , Pressure , Pulmonary Surfactants/administration & dosage , Trachea/physiology , Bronchoscopy , Humans , Instillation, Drug , Respiration, Artificial , SARS-CoV-2
J Pharmacol Exp Ther ; 376(1): 74-83, 2021 01.
Article in English | MEDLINE | ID: covidwho-894806


Acute respiratory distress syndrome (ARDS) is a severe, life-threatening form of respiratory failure characterized by pulmonary edema, inflammation, and hypoxemia due to reduced alveolar fluid clearance (AFC). Alveolar fluid clearance is required for recovery and effective gas exchange, and higher rates of AFC are associated with reduced mortality. Thyroid hormones play multiple roles in lung function, and L-3,5,3'-triiodothyronine (T3) has multiple effects on lung alveolar type II cells. T3 enhances AFC in normal adult rat lungs when administered intramuscularly and in normal or hypoxia-injured lungs when given intratracheally. The safety of a commercially available formulation of liothyronine sodium (synthetic T3) administered intratracheally was assessed in an Investigational New Drug Application-enabling toxicology study in healthy rats. Instillation of the commercial formulation of T3 without modification rapidly caused tracheal injury and often mortality. Intratracheal instillation of T3 that was reformulated and brought to a neutral pH at the maximum feasible dose of 2.73 µg T3 in 300 µl for 5 consecutive days had no clinically relevant T3-related adverse clinical, histopathologic, or clinical pathology findings. There were no unscheduled deaths that could be attributed to the reformulated T3 or control articles, no differences in the lung weights, and no macroscopic or microscopic findings considered to be related to treatment with T3. This preclinical safety study has paved the way for a phase I/II study to determine the safety and tolerability of a T3 formulation delivered into the lungs of patients with ARDS, including coronavirus disease 2019-associated ARDS, and to measure the effect on extravascular lung water in these patients. SIGNIFICANCE STATEMENT: There is growing interest in treating lung disease with thyroid hormone [triiodothyronine (T3)] in pulmonary edema and acute respiratory distress syndrome (ARDS). However, there is not any published experience on the impact of direct administration of T3 into the lung. An essential step is to determine the safety of multiple doses of T3 administered in a relevant animal species. This study enabled Food and Drug Administration approval of a phase I/II clinical trial of T3 instillation in patients with ARDS, including coronavirus disease 2019-associated ARDS (T3-ARDS Identifier NCT04115514).

Instillation, Drug , Lung/drug effects , Respiratory Distress Syndrome/drug therapy , Triiodothyronine/adverse effects , Animals , Drug Evaluation, Preclinical , Female , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Male , Rats , Rats, Sprague-Dawley , Triiodothyronine/administration & dosage , Triiodothyronine/therapeutic use