Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add filters

Year range
1.
Br J Hosp Med (Lond) ; 81(8): 1-3, 2020 Aug 02.
Article in English | MEDLINE | ID: covidwho-743030

ABSTRACT

The UK death toll from COVID-19 is currently the fourth worst in the world behind the USA, Brazil and Mexico. Possible reasons include delays in lockdown, the provision of scientific advice to government and the decisions that government made based on the information they were given. When we review our performance and plan for the next public health crisis, we need to be brave enough to dare to challenge the NHS and its advisors.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , State Medicine/organization & administration , Betacoronavirus , Coronavirus Infections/mortality , Disaster Planning/organization & administration , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Pandemics , Pneumonia, Viral/mortality , Public Health Administration , United Kingdom/epidemiology
2.
Rev Peru Med Exp Salud Publica ; 37(2): 195-202, 2020.
Article in Spanish, English | MEDLINE | ID: covidwho-740608

ABSTRACT

OBJECTIVES: To determine the probability of controlling the outbreak of COVID-19 in Peru, in a pre- and post-quarantine scenario using mathematical simulation models. MATERIALS AND METHODS: Outbreak si mulations for the COVID-19 pandemic are performed, using stochastic equations under the following assumptions: a pre-quarantine population R0 of 2.7 or 3.5, a post-quarantine R0 of 1.5, 2 or 2.7, 18% or 40%, of asymptomatic positives and a maximum response capacity of 50 or 150 patients in the intensive care units. The success of isolation and contact tracing is evaluated, no other mitigation measures are included. RESULTS: In the pre-quarantine stage, success in controlling more than 80% of the simulations occurred only if the isolation of positive cases was implemented from the first case, after which there was less than 40% probability of success. In post-quarantine, with 60 positive cases it is necessary to isolate them early, track all of their contacts and decrease the R0 to 1.5 for outbreak control to be successful in more than 80% of cases. Other scenarios have a low probability of success. CONCLUSIONS: The control of the outbreak in Peru during pre-quarantine stage demanded requirements that were difficult to comply with, therefore quarantine was necessary; to successfully suspend it would require a significant reduction in the spread of the disease, early isolation of positives and follow-up of all contacts of positive patients.


Subject(s)
Computer Simulation , Coronavirus Infections/epidemiology , Disease Outbreaks/prevention & control , Pneumonia, Viral/epidemiology , Contact Tracing/methods , Coronavirus Infections/prevention & control , Humans , Intensive Care Units/statistics & numerical data , Models, Theoretical , Pandemics/prevention & control , Peru/epidemiology , Pneumonia, Viral/prevention & control , Probability , Quarantine
3.
Medicine (Baltimore) ; 99(34): e21824, 2020 Aug 21.
Article in English | MEDLINE | ID: covidwho-733318

ABSTRACT

In December 2019, a cluster of coronavirus Disease 2019 (COVID-19) occurred in Wuhan, Hubei Province, China. The present study was conducted to report the clinical characteristics of 201 COVID-19 patients in Changsha, China, a city outside of Wuhan. All of the patients with confirmed COVID-19 were admitted to the First Hospital of Changsha City, the designated hospital for COVID-19 assigned by the Changsha City Government. The clinical and epidemiological characteristics, data of laboratory, radiological picture, treatment, and outcomes records of 201 COVID-19 patients were collected using electronic medical records. This study population consisted of 201 hospitalized patients with laboratory-confirmed COVID-19 in Changsha by April 28, 2020. The median age of the patients was 45 years (IQR 34-59). About half (50.7%) of the patients were male, and most of the infected patients were staff (96 [47.8%]). Concerning the epidemiologic history, the number of patients linked to Wuhan was 92 (45.8%). The most common symptoms were fever (125 [62.2%]), dry cough (118 [58.7%]), fatigue (65 [32.3%]), and pharyngalgia (31 [15.4%]). One hundred and forty-four (71.6%) enrolled patients showed bilateral pneumonia. Fifty-four (26.9%) patients showed unilateral involvement, and three (1.5%) patients showed no abnormal signs or symptoms. The laboratory findings differed significantly between the Intensive Care Unit (ICU) and non-ICU groups. Compared with non-ICU patients, ICU patients had depressed white blood cell (WBC), neutrocytes, lymphocytes, and prolonged prothrombin time (PT). Moreover, higher plasma levels of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin (PCT), alanine aminotransferase (ALA), aspartate aminotransferase (AST), creatine kinase (CK), creatine kinase-MB (CK-MB), creatinine (CREA), and lactate dehydrogenase (LDH) were detected in the ICU group. In this single-center study of 201 COVID-19 patients in Changsha, China, 22.4% of patients were admitted to ICU. Based on our findings, we propose that the risk of cellular immune deficiency, hepatic injury, and kidney injury should be monitored. Previous reports focused on the clinical features of patients from Wuhan, China. With the global epidemic of COVID-19, we should pay more attention to the clinical and epidemiological characteristics of patients outside of Wuhan.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Adult , Betacoronavirus , China/epidemiology , Coronavirus Infections/complications , Cough/epidemiology , Female , Fever/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Real-Time Polymerase Chain Reaction
4.
J Intensive Care Med ; 35(10): 963-970, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-722236

ABSTRACT

BACKGROUND: The first confirmed case of novel coronavirus (2019-nCoV) infection in the United States was reported from the state of Washington in January, 2020. By March, 2020, New York City had become the epicenter of the outbreak in the United States. METHODS: We tracked all patients with confirmed coronavirus-19 (COVID-19) infection admitted to intensive care units (ICU) at Montefiore Medical Center (Bronx, NY). Data were obtained through manual review of electronic medical records. Patients had at least 30 days of follow-up. RESULTS: Our first 300 ICU patients were admitted March 10 through April 11, 2020. The majority (60.7%) of patients were men. Acute respiratory distress syndrome (ARDS) was documented in 91.7% of patients; 91.3% required mechanical ventilation. Prone positioning was employed in 58% of patients and neuromuscular blockade in 47.8% of mechanically-ventilated patients. Neither intervention was associated with decreased mortality. Vasopressors were required in 77.7% of patients. Acute kidney injury (AKI) was present on admission in 40.7% of patients, and developed subsequently in 36.0%; 50.9% of patients with AKI received renal replacement therapy (RRT). Overall 30-day mortality rate was 52.3%, and 55.8% among patients receiving mechanical ventilation. In univariate analysis, higher mortality rate was associated with increasing age, male sex, hypertension, obesity, smoking, number of comorbidities, AKI on presentation, and need for vasopressor support. A representative multivariable model for 30-day mortality is also presented, containing patient age, gender, body mass index, and AKI at admission. As of May 11, 2020, 2 patients (0.7%) remained hospitalized. CONCLUSIONS: Mortality in critical illness associated with COVID-19 is high. The majority of patients develop ARDS requiring mechanical ventilation, vasopressor-dependent shock, and AKI. The variation in mortality rates reported to date likely reflects differences in the severity of illness of the evaluated populations.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Critical Care/statistics & numerical data , Critical Illness/mortality , Pneumonia, Viral/mortality , Acute Kidney Injury/mortality , Acute Kidney Injury/virology , Adult , Aged , Coronavirus Infections/complications , Critical Care/methods , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/complications , Respiration, Artificial/mortality , Respiratory Distress Syndrome, Adult/mortality , Respiratory Distress Syndrome, Adult/virology
5.
Gac Med Mex ; 156(4): 339-343, 2020.
Article in English | MEDLINE | ID: covidwho-719927

ABSTRACT

The disease caused by the new SARS-CoV-2 coronavirus (COVID-19) spread rapidly from China to the entire world. Approximately one third of SARS-CoV-2-infected patients have neurological disorders, especially those classified as severe cases and that require mechanical ventilation. On the other hand, almost nine out of 10 patients admitted to an Intensive Care Unit could not breathe spontaneously, thus requiring invasive and non-invasive ventilatory support. So far, whether early neurological disorders such as hyposmia or anosmia, dysgeusia or ageusia, headache and vertigo are significant in the progression to the severe form of the disease or whether they are related to entry to the central nervous system via peripheral nerves has not been determined. Considering the great similarity between SARS-CoV and SARS-CoV-2, and that the severity of the condition that leads to death cannot be explained solely by lung involvement, it is important to determine whether SARS-CoV-2 potential invasion to the central nervous system is partially responsible for the severe respiratory component observed in patients with COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Nervous System Diseases/virology , Pneumonia, Viral/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Progression , Humans , Intensive Care Units/statistics & numerical data , Nervous System Diseases/epidemiology , Nervous System Diseases/physiopathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiration, Artificial/statistics & numerical data , Severity of Illness Index , Viral Tropism
6.
BMC Med Res Methodol ; 20(1): 206, 2020 08 11.
Article in English | MEDLINE | ID: covidwho-705522

ABSTRACT

BACKGROUND: The clinical progress of patients hospitalized due to COVID-19 is often associated with severe pneumonia which may require intensive care, invasive ventilation, or extracorporeal membrane oxygenation (ECMO). The length of intensive care and the duration of these supportive therapies are clinically relevant outcomes. From the statistical perspective, these quantities are challenging to estimate due to episodes being time-dependent and potentially multiple, as well as being determined by the competing, terminal events of discharge alive and death. METHODS: We used multistate models to study COVID-19 patients' time-dependent progress and provide a statistical framework to estimate hazard rates and transition probabilities. These estimates can then be used to quantify average sojourn times of clinically important states such as intensive care and invasive ventilation. We have made two real data sets of COVID-19 patients (n = 24* and n = 53**) and the corresponding statistical code publically available. RESULTS: The expected lengths of intensive care unit (ICU) stay at day 28 for the two cohorts were 15.05* and 19.62** days, while expected durations of mechanical ventilation were 7.97* and 9.85** days. Predicted mortality stood at 51%* and 15%**. Patients mechanically ventilated at the start of the example studies had a longer expected duration of ventilation (12.25*, 14.57** days) compared to patients non-ventilated (4.34*, 1.41** days) after 28 days. Furthermore, initially ventilated patients had a higher risk of death (54%* and 20%** vs. 48%* and 6%**) after 4 weeks. These results are further illustrated in stacked probability plots for the two groups from time zero, as well as for the entire cohort which depicts the predicted proportions of the patients in each state over follow-up. CONCLUSIONS: The multistate approach gives important insights into the progress of COVID-19 patients in terms of ventilation duration, length of ICU stay, and mortality. In addition to avoiding frequent pitfalls in survival analysis, the methodology enables active cases to be analyzed by allowing for censoring. The stacked probability plots provide extensive information in a concise manner that can be easily conveyed to decision makers regarding healthcare capacities. Furthermore, clear comparisons can be made among different baseline characteristics.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Critical Care/statistics & numerical data , Length of Stay/statistics & numerical data , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiration, Artificial/methods , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Algorithms , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Cohort Studies , Compassionate Use Trials/methods , Coronavirus Infections/mortality , Coronavirus Infections/virology , Critical Care/methods , Humans , Intensive Care Units/statistics & numerical data , Models, Theoretical , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Survival Analysis , Survival Rate , Time Factors
7.
Int J Environ Res Public Health ; 17(16)2020 08 05.
Article in English | MEDLINE | ID: covidwho-696422

ABSTRACT

In Italy, the COVID-19 epidemic curve started to flatten when the health system had already exceeded its capacity, raising concerns that the lockdown was indeed delayed. The aim of this study was to evaluate the health effects of late implementation of the lockdown in Italy. Using national data on the daily number of COVID-19 cases, we first estimated the effect of the lockdown, employing an interrupted time series analysis. Second, we evaluated the effect of an early lockdown on the trend of new cases, creating a counterfactual scenario where the intervention was implemented one week in advance. We then predicted the corresponding number of intensive care unit (ICU) admissions, non-ICU admissions, and deaths. Finally, we compared results under the actual and counterfactual scenarios. An early implementation of the lockdown would have avoided about 126,000 COVID-19 cases, 54,700 non-ICU admissions, 15,600 ICU admissions, and 12,800 deaths, corresponding to 60% (95%CI: 55% to 64%), 52% (95%CI: 46% to 57%), 48% (95%CI: 42% to 53%), and 44% (95%CI: 38% to 50%) reduction, respectively. We found that the late implementation of the lockdown in Italy was responsible for a substantial proportion of hospital admissions and deaths associated with the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , Mortality/trends , Pneumonia, Viral/epidemiology , Quarantine/statistics & numerical data , Betacoronavirus , Humans , Interrupted Time Series Analysis , Italy/epidemiology , Pandemics
8.
Health Aff (Millwood) ; 39(8): 1362-1367, 2020 08.
Article in English | MEDLINE | ID: covidwho-693514

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of intensive care unit (ICU) beds in preventing death from the severe respiratory illness associated with COVID-19. However, the availability of ICU beds is highly variable across the US, and health care resources are generally more plentiful in wealthier communities. We examined disparities in community ICU beds by US communities' median household income. We found a large gap in access by income: 49 percent of the lowest-income communities had no ICU beds in their communities, whereas only 3 percent of the highest-income communities had no ICU beds. Income disparities in the availability of community ICU beds were more acute in rural areas than in urban areas. Policies that facilitate hospital coordination are urgently needed to address shortages in ICU hospital bed supply to mitigate the effects of the COVID-19 pandemic on mortality rates in low-income communities.


Subject(s)
Coronavirus Infections/epidemiology , Critical Care/organization & administration , Health Services Accessibility/statistics & numerical data , Healthcare Disparities/economics , Intensive Care Units/statistics & numerical data , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Coronavirus Infections/therapy , Female , Health Services Needs and Demand , Hospital Bed Capacity , Humans , Income , Male , Pandemics/prevention & control , Pneumonia, Viral/therapy , Poverty/statistics & numerical data , United States , Vulnerable Populations/statistics & numerical data
9.
PLoS One ; 15(7): e0236237, 2020.
Article in English | MEDLINE | ID: covidwho-689504

ABSTRACT

We use a simple SIR-like epidemic model integrating known age-contact patterns for the United States to model the effect of age-targeted mitigation strategies for a COVID-19-like epidemic. We find that, among strategies which end with population immunity, strict age-targeted mitigation strategies have the potential to greatly reduce mortalities and ICU utilization for natural parameter choices.


Subject(s)
Age Factors , Coronavirus Infections/prevention & control , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , Coronavirus Infections/mortality , Humans , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/mortality , United States
10.
Med Sci Monit ; 26: e925047, 2020 Jul 28.
Article in English | MEDLINE | ID: covidwho-689085

ABSTRACT

BACKGROUND The aim of this study was to describe the clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and compare these parameters in an elderly group with those in a younger group. MATERIAL AND METHODS This retrospective, single-center observational study included 69 hospitalized patients with laboratory-confirmed COVID-19 from a tertiary hospital in Wuhan, China, between January 14, 2020, and February 26, 2020. Epidemiological, demographic, clinical, and laboratory data, as well as treatments, complications, and outcomes were extracted from electronic medical records and compared between elderly patients (aged ≥60 years) and younger patients (aged <60 years). Patients were followed until March 19, 2020. RESULTS Elderly patients had more complications than younger patients, including acute respiratory distress syndrome (ARDS; 9/25, 36% vs. 5/44, 11.4%) and cardiac injury (7/25, 28% vs. 1/44, 2.3%), and they were more likely to be admitted to the intensive care unit (6/25, 24% vs. 2/44, 4.5%). As of March 19, 2020, 60/69 (87%) of the patients had been discharged, 6/69 (8.7%) had died, and 3/69 (4.3%) remained in the hospital. Of those who were discharged or died, the median duration of hospitalization was 13.5 days (interquartile range, 10-18 days). CONCLUSIONS Elderly patients with confirmed COVID-19 were more likely to develop ARDS and cardiac injury than younger patients and were more likely to be admitted to the intensive care unit. In addition to routine monitoring and respiratory support, cardiac monitoring and supportive care should be a focus in elderly patients with COVID-19.


Subject(s)
Age Factors , Coronavirus Infections/epidemiology , Heart Diseases/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Distress Syndrome, Adult/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Adult , Aged , Aged, 80 and over , Betacoronavirus , China/epidemiology , Combined Modality Therapy , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Heart Diseases/etiology , Humans , Inpatients , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Multiple Organ Failure/epidemiology , Multiple Organ Failure/etiology , Palliative Care/statistics & numerical data , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiratory Distress Syndrome, Adult/etiology , Retrospective Studies , Tertiary Care Centers , Treatment Outcome , Young Adult
12.
Crit Care ; 24(1): 468, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-679772

ABSTRACT

BACKGROUND: Cardiac injury is now a common complication of coronavirus disease (COVID-19), but it remains unclear whether cardiac injury-related biomarkers can be independent predictors of mortality and severe disease development or intensive care unit (ICU) admission. METHODS: Two investigators searched the PubMed, EMBASE, Cochrane Library, MEDLINE, Chinese National Knowledge Infrastructure (CNKI), Wanfang, MedRxiv, and ChinaXiv databases for articles published through March 30, 2020. Retrospective studies assessing the relationship between the prognosis of COVID-19 patients and levels of troponin I (TnI) and other cardiac injury biomarkers (creatine kinase [CK], CK myocardial band [CK-MB], lactate dehydrogenase [LDH], and interleukin-6 [IL-6]) were included. The data were extracted independently by two investigators. RESULTS: The analysis included 23 studies with 4631 total individuals. The proportions of severe disease, ICU admission, or death among patients with non-elevated TnI (or troponin T [TnT]), and those with elevated TnI (or TnT) were 12.0% and 64.5%, 11.8% and 56.0%, and 8.2% and. 59.3%, respectively. Patients with elevated TnI levels had significantly higher risks of severe disease, ICU admission, and death (RR 5.57, 95% CI 3.04 to 10.22, P < 0.001; RR 6.20, 95% CI 2.52 to 15.29, P < 0.001; RR 5.64, 95% CI 2.69 to 11.83, P < 0.001). Patients with an elevated CK level were at significantly increased risk of severe disease or ICU admission (RR 1.98, 95% CI 1.50 to 2.61, P < 0.001). Patients with elevated CK-MB levels were at a higher risk of developing severe disease or requiring ICU admission (RR 3.24, 95% CI 1.66 to 6.34, P = 0.001). Patients with newly occurring arrhythmias were at higher risk of developing severe disease or requiring ICU admission (RR 13.09, 95% CI 7.00 to 24.47, P < 0.001). An elevated IL-6 level was associated with a higher risk of developing severe disease, requiring ICU admission, or death. CONCLUSIONS: COVID-19 patients with elevated TnI levels are at significantly higher risk of severe disease, ICU admission, and death. Elevated CK, CK-MB, LDH, and IL-6 levels and emerging arrhythmia are associated with the development of severe disease and need for ICU admission, and the mortality is significantly higher in patients with elevated LDH and IL-6 levels.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/mortality , Heart Injuries/etiology , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Biomarkers/blood , Coronavirus Infections/blood , Coronavirus Infections/therapy , Heart Injuries/blood , Hospitalization/statistics & numerical data , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Predictive Value of Tests , Risk Assessment , Severity of Illness Index , Troponin I/blood
13.
Lancet ; 395(10223): 497-506, 2020 02 15.
Article in English | MEDLINE | ID: covidwho-665705

ABSTRACT

BACKGROUND: A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. METHODS: All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. FINDINGS: By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0-58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0-13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. INTERPRETATION: The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. FUNDING: Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adult , Age Distribution , Aged , China/epidemiology , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/transmission , Cough/epidemiology , Cough/virology , Female , Fever/epidemiology , Fever/virology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Myalgia/epidemiology , Myalgia/virology , Pneumonia, Viral/complications , Pneumonia, Viral/transmission , Prognosis , Radiography, Thoracic , Respiratory Distress Syndrome, Adult/epidemiology , Respiratory Distress Syndrome, Adult/virology , Time Factors , Tomography, X-Ray Computed , Young Adult
15.
Swiss Med Wkly ; 150: w20314, 2020 07 13.
Article in English | MEDLINE | ID: covidwho-646809

ABSTRACT

BACKGROUND: Since its first description in December 2019, coronavirus disease 19 (COVID-19) has spread worldwide. There is limited information about presenting characteristics and outcomes of Swiss patients requiring hospitalisation. Furthermore, outcomes 30 days after onset of symptoms and after hospital discharge have not been described. AIMS: To describe the clinical characteristics, outcomes 30 days after onset of symptoms and in-hospital mortality of a cohort of patients hospitalised for COVID-19 in a Swiss area. METHODS: In this retrospective cohort study, we included all inpatients hospitalised with microbiologically confirmed COVID-19 between 1 March and 12 April 2020 in the public hospital network of a Swiss area (Fribourg). Demographic data, comorbidities and outcomes were recorded. Rate of potential hospital-acquired infection, outcomes 30 days after onset of symptoms and in-hospital mortality are reported. RESULTS: One hundred ninety-six patients were included in the study. In our population, 119 (61%) were male and the median age was 70 years. Forty-nine patients (25%) were admitted to the intensive care unit (ICU). The rate of potential hospital-acquired infection was 7%. Overall, 30 days after onset of symptoms 117 patients (60%) had returned home, 23 patients (12%) were in a rehabilitation facility, 18 patients (9%) in a medical ward, 6 patients (3%) in ICU and 32 (16%) patients had died. Among patients who returned home within 30 days, 73 patients (63%) reported persistent symptoms. The overall in-hospital mortality was 17%. CONCLUSION: We report the first cohort of Swiss patients hospitalised with COVID-19. Thirty days after onset of the symptoms, 60% had returned home. Among them, 63% still presented symptoms. Studies with longer follow-up are needed to document long-term outcomes in patients hospitalised with COVID-19.


Subject(s)
Aftercare/statistics & numerical data , Betacoronavirus/isolation & purification , Coronavirus Infections , Hospitalization/statistics & numerical data , Pandemics , Pneumonia, Viral , Aged , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Demography , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Male , Outcome and Process Assessment, Health Care , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Retrospective Studies , Switzerland/epidemiology , Symptom Assessment/methods
18.
Eur Respir J ; 55(6)2020 06.
Article in English | MEDLINE | ID: covidwho-622479

ABSTRACT

BACKGROUND: During the outbreak of coronavirus disease 2019 (COVID-19), consistent and considerable differences in disease severity and mortality rate of patients treated in Hubei province compared to those in other parts of China have been observed. We sought to compare the clinical characteristics and outcomes of patients being treated inside and outside Hubei province, and explore the factors underlying these differences. METHODS: Collaborating with the National Health Commission, we established a retrospective cohort to study hospitalised COVID-19 cases in China. Clinical characteristics, the rate of severe events and deaths, and the time to critical illness (invasive ventilation or intensive care unit admission or death) were compared between patients within and outside Hubei. The impact of Wuhan-related exposure (a presumed key factor that drove the severe situation in Hubei, as Wuhan is the epicentre as well the administrative centre of Hubei province) and the duration between symptom onset and admission on prognosis were also determined. RESULTS: At the data cut-off (31 January 2020), 1590 cases from 575 hospitals in 31 provincial administrative regions were collected (core cohort). The overall rate of severe cases and mortality was 16.0% and 3.2%, respectively. Patients in Hubei (predominantly with Wuhan-related exposure, 597 (92.3%) out of 647) were older (mean age 49.7 versus 44.9 years), had more cases with comorbidity (32.9% versus 19.7%), higher symptomatic burden, abnormal radiologic manifestations and, especially, a longer waiting time between symptom onset and admission (5.7 versus 4.5 days) compared with patients outside Hubei. Patients in Hubei (severe event rate 23.0% versus 11.1%, death rate 7.3% versus 0.3%, HR (95% CI) for critical illness 1.59 (1.05-2.41)) have a poorer prognosis compared with patients outside Hubei after adjusting for age and comorbidity. However, among patients outside Hubei, the duration from symptom onset to hospitalisation (mean 4.4 versus 4.7 days) and prognosis (HR (95%) 0.84 (0.40-1.80)) were similar between patients with or without Wuhan-related exposure. In the overall population, the waiting time, but neither treated in Hubei nor Wuhan-related exposure, remained an independent prognostic factor (HR (95%) 1.05 (1.01-1.08)). CONCLUSION: There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre. Future studies to determine the reason for delaying hospitalisation are warranted.


Subject(s)
Coronavirus Infections/mortality , Hospitalization , Pneumonia, Viral/mortality , Adult , Aged , Betacoronavirus , Cardiovascular Diseases/epidemiology , China , Cohort Studies , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/diagnostic imaging , Cough/etiology , Diabetes Mellitus/epidemiology , Disease Outbreaks , Dyspnea/etiology , Fatigue/etiology , Female , Fever/etiology , Geography , Humans , Hypertension/epidemiology , Intensive Care Units/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pharyngitis/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnostic imaging , Prognosis , Proportional Hazards Models , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Severity of Illness Index , Time Factors , Time-to-Treatment/statistics & numerical data , Tomography, X-Ray Computed
19.
Rev Inst Med Trop Sao Paulo ; 62: e45, 2020.
Article in English | MEDLINE | ID: covidwho-622435

ABSTRACT

Age, sex and presence of comorbidities are risk factors associated with COVID-19. Hypertension, diabetes and heart disease are the most common comorbidities in patients with COVID-19. The objective of this study was to estimate the prevalence of patients with comorbidities who died of COVID-19 in Brazil. Searches of data were carried out on the official pages of the 26 State health departments and the federal district. The random-effect method was used to calculate the prevalence of patients with comorbidities who died. From the beginning of the pandemic in Brazil until May 20, 2020, 276,703 cases of COVID-19 were notified in Brazil, 6.4% died, 58.6% of whom were male. The prevalence of comorbidities among deaths was 83% (95% CI: 79 - 87), with heart disease and diabetes being the most prevalent. To our knowledge, this study represents the first large analysis of cases of patients with confirmed COVID-19 in Brazil. There is a high prevalence of comorbidities (83%) among patients who died from COVID-19 in Brazil, with heart disease being the most prevalent. This is important considering the possible secondary effects produced by drugs such as hydroxychloroquine.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Heart Diseases/mortality , Pandemics/statistics & numerical data , Pneumonia, Viral/mortality , Brazil/epidemiology , Chronic Disease , Comorbidity , Diabetes Mellitus/mortality , Female , Humans , Hypertension/mortality , Immune System Diseases/mortality , Intensive Care Units/statistics & numerical data , Kidney Diseases/mortality , Lung Diseases/mortality , Male , Obesity/mortality , Pneumonia/mortality , Prevalence , Risk Factors , Sex Distribution , Sex Factors , Stroke/mortality
SELECTION OF CITATIONS
SEARCH DETAIL