Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-1542584

ABSTRACT

Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Adenoviridae/drug effects , Animals , COVID-19/drug therapy , Cell Line , Cyclin-Dependent Kinase 9 , Drug Delivery Systems , Herpesvirus 3, Human/drug effects , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Mice , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Zika Virus/drug effects
2.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1085074

ABSTRACT

One of the most severe effects of coronavirus disease 2019 (COVID-19) is lung disorders such as acute respiratory distress syndrome. In the absence of effective treatments, it is necessary to search for new therapies and therapeutic targets. Platelets play a fundamental role in respiratory disorders resulting from viral infections, being the first line of defense against viruses and essential in maintaining lung function. The direct application of platelet lysate (PL) obtained from the platelet-rich plasma of healthy donors could help in the improvement of the patient due its anti-inflammatory, immunomodulatory, antifibrotic, and repairing effects. This work evaluates PL nebulization by analyzing its levels of growth factors and its biological activity on lung fibroblast cell cultures, besides describing a scientific basis for its use in this kind of pathology. The data of the work suggest that the molecular levels and biological activity of the PL are maintained after nebulization. Airway administration would allow acting directly on the lung tissue modulating inflammation and stimulating reparative processes on key structures such as the alveolocapillary barrier, improving the disease and sequels. The protocol developed in this work is a first step for the study of nebulized PL both in animal experimentation and in clinical trials.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/therapy , Immunologic Factors/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Platelet-Rich Plasma , Adult , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/immunology , Blood Platelets/immunology , COVID-19/immunology , Cell Line , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/immunology , Male , Nebulizers and Vaporizers , Platelet-Rich Plasma/immunology , SARS-CoV-2/immunology , Treatment Outcome
3.
Cytotherapy ; 22(8): 458-472, 2020 08.
Article in English | MEDLINE | ID: covidwho-209852

ABSTRACT

BACKGROUND AIMS: Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow-derived MSCs. METHODS: Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. RESULTS: Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. CONCLUSIONS: Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.


Subject(s)
Blood Platelets/cytology , Cell Culture Techniques/methods , Filtration , Mesenchymal Stem Cells/cytology , Nanotechnology , Adipogenesis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Culture Media/pharmacology , Extracellular Vesicles/metabolism , Gene Expression Profiling , Humans , Immunophenotyping , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Particle Size , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL