Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Eur J Pharmacol ; 927: 175051, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1864556

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is currently the major global health problem. Still, it continues to infect people globally and up to the end of February 2022, over 436 million confirmed cases of COVID-19, including 5.95 million deaths, were reported to the world health organization (WHO). No specific treatment is currently available for COVID-19, and the discovery of effective therapeutics requires understanding the effective immunologic and immunopathologic mechanisms behind this infection. Type-I interferons (IFN-Is), as the critical elements of the immediate immune response against viral infections, can inhibit the replication and spread of the viruses. However, the available evidence shows that the antiviral IFN-I response is impaired in patients with the severe form of COVID-19. Moreover, the administration of exogenous IFN-I in different phases of the disease can lead to various outcomes. Therefore, understanding the role of IFN-I molecules in COVID-19 development and its severity can provide valuable information for better management of this disease. This review summarizes the role of IFN-Is in the pathogenesis of COIVD-19 and discusses the importance of autoantibodies against this cytokine in the spreading of SARS-CoV-2 and control of the subsequent excessive inflammation.


Subject(s)
COVID-19 , Interferon Type I , COVID-19/drug therapy , Cytokines , Humans , Interferon Type I/therapeutic use , SARS-CoV-2
2.
Cells ; 11(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862727

ABSTRACT

Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.


Subject(s)
COVID-19 , Interferon Type I , COVID-19/drug therapy , Dopamine , Down-Regulation , Humans , Interferon Type I/genetics , Receptors, Dopamine D2 , SARS-CoV-2 , Up-Regulation
3.
Front Immunol ; 13: 859749, 2022.
Article in English | MEDLINE | ID: covidwho-1862606

ABSTRACT

In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.


Subject(s)
COVID-19 , Interferon Type I , Animals , Antiviral Agents/pharmacology , Humans , Interferon Type I/metabolism , Mammals/genetics , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2
5.
J Mol Biol ; 434(6): 167438, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1851578

ABSTRACT

Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.


Subject(s)
Antiviral Agents , Coronavirus Infections , Coronavirus , Drug Development , Immune Evasion , Interferon Type I , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Coronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunity, Innate , Interferon Type I/immunology , Interferon Type I/therapeutic use , SARS-CoV-2/immunology
6.
J Mol Biol ; 434(6): 167265, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1851575

ABSTRACT

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by a delayed interferon (IFN) response and high levels of proinflammatory cytokine expression. Type I and III IFNs serve as a first line of defense during acute viral infections and are readily antagonized by viruses to establish productive infection. A rapidly growing body of work has interrogated the mechanisms by which SARS-CoV-2 antagonizes both IFN induction and IFN signaling to establish productive infection. Here, we summarize these findings and discuss the molecular interactions that prevent viral RNA recognition, inhibit the induction of IFN gene expression, and block the response to IFN treatment. We also describe the mechanisms by which SARS-CoV-2 viral proteins promote host shutoff. A detailed understanding of the host-pathogen interactions that unbalance the IFN response is critical for the design and deployment of host-targeted therapeutics to manage COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Antiviral Agents/pharmacology , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferons , SARS-CoV-2
7.
IUBMB Life ; 74(2): 180-189, 2022 02.
Article in English | MEDLINE | ID: covidwho-1850069

ABSTRACT

The induction of type I interferons (IFN) is critical for antiviral innate immune response. The rapid activation of antiviral innate immune responses is the key to successful clearance of evading pathogens. To achieve this, a series of proteins, including the pathogen recognition receptors (PRRs), the adaptor proteins, the accessory proteins, kinases, and the transcription factors, are all involved and finely orchestrated. The magnitude and latitude of type I IFN induction however are distinctly regulated in different tissues. A set of interferon simulated genes (ISGs) are then expressed in response to type I IFN signaling to set the cells in the antiviral state. In this review, how type I IFN is induced by viral infections by intracellular PRRs and how type I IFN triggers the expression of downstream effectors will be discussed.


Subject(s)
Interferon Type I , Nucleic Acids , Viruses , Cytosol , Immunity, Innate , Interferon Type I/genetics
10.
Vopr Virusol ; 67(2): 115-125, 2022 05 05.
Article in Russian | MEDLINE | ID: covidwho-1836596

ABSTRACT

By the end of 2021, about 200 studies on the effect of interferons (IFNs) on the incidence and course of the new coronavirus infection COVID-19 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) have been reported worldwide, with the number of such studies steadily increasing. This review discusses the main issues of the use of IFN drugs in this disease. The literature search was carried out in the PubMed, Scopus, Cochrane Library, Web of Science, RSCI databases, as well as in the Google Scholar preprint database using the available search queries «MeSH for coronavirus¼, «SARS-CoV-2¼, «IFN drugs¼, and «COVID-19¼. Interferon therapy is indicated for early administration (within the first 5 days of patient admission) in cases of mild to moderate COVID-19 to take advantage of the narrow therapeutic window of IFNs action. Control and suppression of viral replication requires therapy with IFNs and other effective antiviral agents that inhibit the reproduction of SARS-CoV-2 and induce several interferon-stimulated genes (ISG). Type I IFNs (IFN-I) exhibit potent pro-inflammatory properties and activate a wide variety of different cell types that respond to IFNs stimulation and pathogen entry. IFN-III confer local mucosal antiviral immunity without inducing the strong systemic pro-inflammatory responses associated with IFN-I. The use of IFNs drugs in the therapy of new coronavirus infection requires a cautious and differentiated approach, because in severe cases they can aggravate viral pathogenesis by causing excessive intensity of inflammatory reactions. The unique biological properties of substances of this class allow us to consider them as therapeutic agents with significant potential for use in patients with COVID-19.


Subject(s)
COVID-19 , Coronaviridae , Interferon Type I , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Interferon Type I/pharmacology , Interferon Type I/therapeutic use , Interferons/therapeutic use , SARS-CoV-2
11.
Nutrients ; 14(7)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1834851

ABSTRACT

Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the "Suppressor Of Cytokine Signaling 1 and 3" (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the "typical western" conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.


Subject(s)
COVID-19 , Interferon Type I , Leptin , Obesity , COVID-19/complications , COVID-19/immunology , Humans , Inflammation , Interferon Type I/immunology , Obesity/complications , SARS-CoV-2
12.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Article in English | MEDLINE | ID: covidwho-1833668

ABSTRACT

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Subject(s)
COVID-19 , Interferon Type I , Orthomyxoviridae Infections , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Proteolysis
13.
J Virol ; 96(10): e0007022, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1832352

ABSTRACT

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , DNA-Binding Proteins , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Coronavirus Infections/veterinary , DNA-Binding Proteins/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Myeloid Differentiation Factor 88/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , RNA/metabolism , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/metabolism
14.
Cell Rep Med ; 3(3): 100557, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1815271

ABSTRACT

Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1-2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines.


Subject(s)
COVID-19 , Interferon Type I , CD8-Positive T-Lymphocytes , Flow Cytometry , Humans , SARS-CoV-2/genetics
15.
EMBO J ; 41(10): e111208, 2022 May 16.
Article in English | MEDLINE | ID: covidwho-1811580

ABSTRACT

Plasmacytoid dendritic cells (pDC) have the unique ability to rapidly mount high-level antiviral type I interferon (IFN-I) responses during diverse virus infections. In COVID-19 patients, reduced pDC numbers correlate with diminished IFN-I serum levels and enhanced disease severity. However, the molecular mechanisms underlying SARS-CoV-2-mediated pDC stimulation to induce cytokine responses are still largely unclear. In this issue of the EMBO Journal, van der Sluis and colleagues tackled this question by using an innovative hematopoietic stem and progenitor cells (HSPC)-pDC system that allows gene editing and the detailed analysis of pDC sensing mechanisms.


Subject(s)
COVID-19 , Interferon Type I , Toll-Like Receptors , Dendritic Cells , Humans , SARS-CoV-2
16.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1806201

ABSTRACT

Type I interferons (IFN-I) play a critical role in human antiviral immunity, as demonstrated by the exceptionally rare deleterious variants of IFNAR1 or IFNAR2. We investigated five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination. The affected individuals bore the same homozygous IFNAR2 c.157T>C, p.Ser53Pro missense variant. Although absent from reference databases, p.Ser53Pro occurred with a minor allele frequency of 0.034 in their Inuit ancestry. The serine to proline substitution prevented cell surface expression of IFNAR2 protein, small amounts of which persisted intracellularly in an aberrantly glycosylated state. Cells exclusively expressing the p.Ser53Pro variant lacked responses to recombinant IFN-I and displayed heightened vulnerability to multiple viruses in vitro-a phenotype rescued by wild-type IFNAR2 complementation. This novel form of autosomal recessive IFNAR2 deficiency reinforces the essential role of IFN-I in viral immunity. Further studies are warranted to assess the need for population screening.


Subject(s)
COVID-19 , Interferon Type I , Antiviral Agents/metabolism , Child , Humans , Inheritance Patterns , Interferon Type I/genetics , Interferon Type I/metabolism , Receptor, Interferon alpha-beta
17.
Sci Signal ; 15(729): eabg8744, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1784765

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the unprecedented coronavirus disease 2019 (COVID-19) pandemic. Critical cases of COVID-19 are characterized by the production of excessive amounts of cytokines and extensive lung damage, which is partially caused by the fusion of SARS-CoV-2-infected pneumocytes. Here, we found that cell fusion caused by the SARS-CoV-2 spike (S) protein induced a type I interferon (IFN) response. This function of the S protein required its cleavage by proteases at the S1/S2 and the S2' sites. We further showed that cell fusion damaged nuclei and resulted in the formation of micronuclei that were sensed by the cytosolic DNA sensor cGAS and led to the activation of its downstream effector STING. Phosphorylation of the transcriptional regulator IRF3 and the expression of IFNB, which encodes a type I IFN, were abrogated in cGAS-deficient fused cells. Moreover, infection with VSV-SARS-CoV-2 also induced cell fusion, DNA damage, and cGAS-STING-dependent expression of IFNB. Together, these results uncover a pathway underlying the IFN response to SARS-CoV-2 infection. Our data suggest a mechanism by which fused pneumocytes in the lungs of patients with COVID-19 may enhance the production of IFNs and other cytokines, thus exacerbating disease severity.


Subject(s)
COVID-19 , Interferon Type I , COVID-19/genetics , Cell Fusion , Cytokines , Humans , Interferon Type I/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
J Virol ; 96(8): e0003722, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779311

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Interferon Type I , SARS Virus , SARS-CoV-2 , Antiviral Agents , COVID-19/immunology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Immune Evasion/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , SARS Virus/enzymology , SARS Virus/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Virus Replication/genetics
19.
Front Immunol ; 13: 840126, 2022.
Article in English | MEDLINE | ID: covidwho-1775673

ABSTRACT

Morbidity and mortality of COVID-19 is increased in patients with inborn errors of immunity (IEI). Age and comorbidities and also impaired type I interferon immunity were identified as relevant risk factors. In patients with primary antibody deficiency (PAD) and lack of specific humoral immune response to SARS-CoV-2, clinical disease outcome is very heterogeneous. Despite extensive clinical reports, underlying immunological mechanisms are poorly characterized and levels of T cellular and innate immunity in severe cases remain to be determined. In the present study, we report clinical and immunological findings of 5 PAD patients with severe and fatal COVID-19 and undetectable specific humoral immune response to SARS-CoV-2. Reactive T cells to SARS-CoV-2 spike (S) and nucleocapsid (NCAP) peptide pools were analyzed comparatively by flow cytometry in PAD patients, convalescents and naïve healthy individuals. All examined PAD patients developed a robust T cell response. The presence of polyfunctional cytokine producing activated CD4+ T cells indicates a memory-like phenotype. An analysis of innate immune response revealed elevated CD169 (SIGLEC1) expression on monocytes, a surrogate marker for type I interferon response, and presence of type I interferon autoantibodies was excluded. SARS-CoV-2 RNA was detectable in peripheral blood in three severe COVID-19 patients with PAD. Viral clearance in blood was observed after treatment with COVID-19 convalescent plasma/monoclonal antibody administration. However, prolonged mucosal viral shedding was observed in all patients (median 67 days) with maximum duration of 127 days. PAD patients without specific humoral SARS-CoV-2 immunity may suffer from severe or fatal COVID-19 despite robust T cell and normal innate immune response. Intensified monitoring for long persistence of SARS-CoV-2 viral shedding and (prophylactic) convalescent plasma/specific IgG as beneficial treatment option in severe cases with RNAemia should be considered in seronegative PAD patients.


Subject(s)
COVID-19 , Interferon Type I , Primary Immunodeficiency Diseases , Antibodies, Viral , COVID-19/therapy , Humans , Immunity, Humoral , Immunization, Passive , RNA, Viral , SARS-CoV-2 , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL