Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Curr Opin Immunol ; 72: 230-238, 2021 10.
Article in English | MEDLINE | ID: covidwho-1603901

ABSTRACT

The study of monogenic autoimmune diseases has provided key insights into molecular mechanisms involved in development of autoimmunity and immune tolerance. It has also become clear that such inborn errors of immunity (IEIs) frequently present clinically not only with autoimmune diseases, but also frequently have increased susceptibility to infection. The genes associated with monogenic autoimmunity influence diverse functional pathways, and the resulting immune dysregulation also impacts the complex and coordinated immune response to pathogens, for example type I interferon and cytokine signaling, the complement pathway and proper differentiation of the immune response. The SARS-CoV-2 pandemic has highlighted how monogenic autoimmunity can increase risk for serious infection with the discovery of severe disease in patients with pre-existing antibodies to Type I IFNs. This review discusses recent insight into the relationship between monogenic autoimmunity and infectious diseases.


Subject(s)
Autoimmune Diseases/immunology , COVID-19/immunology , Communicable Diseases/immunology , SARS-CoV-2/physiology , Animals , Autoimmune Diseases/genetics , COVID-19/genetics , Communicable Diseases/genetics , Disease Susceptibility , Humans , Interferon Type I/metabolism
2.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1594167

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
4.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: covidwho-1510855

ABSTRACT

As SARS-CoV-2 continues to cause morbidity and mortality around the world, there is an urgent need for the development of effective medical countermeasures. Here, we assessed the antiviral capacity of a minimal RIG-I agonist, stem-loop RNA 14 (SLR14), in viral control, disease prevention, post-infection therapy, and cross-variant protection in mouse models of SARS-CoV-2 infection. A single dose of SLR14 prevented viral infection in the lower respiratory tract and development of severe disease in a type I interferon (IFN-I)-dependent manner. SLR14 demonstrated remarkable prophylactic protective capacity against lethal SARS-CoV-2 infection and retained considerable efficacy as a therapeutic agent. In immunodeficient mice carrying chronic SARS-CoV-2 infection, SLR14 elicited near-sterilizing innate immunity in the absence of the adaptive immune system. In the context of infection with variants of concern (VOCs), SLR14 conferred broad protection against emerging VOCs. These findings demonstrate the therapeutic potential of SLR14 as a host-directed, broad-spectrum antiviral for early post-exposure treatment and treatment of chronically infected immunosuppressed patients.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , RNA/metabolism , SARS-CoV-2/drug effects , Animals , COVID-19/metabolism , Disease Models, Animal , Immunity, Innate/drug effects , Interferon Type I/metabolism , Mice , Mice, Inbred BALB C
5.
Front Immunol ; 12: 738073, 2021.
Article in English | MEDLINE | ID: covidwho-1497076

ABSTRACT

The mechanisms underlying the immune remodeling and severity response in coronavirus disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in patients with mild/moderate and severe infections, indicate a robust expansion and mobilization of the innate immune response and highlight mechanisms by which low-density neutrophils and megakaryocytes play a crucial role in the cross talk between lymphoid and myeloid lineages. We also document a marked reduction of several lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T (MAIT) cells, and gamma-delta T (γδT) cells, and a robust expansion and extensive heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm the changes in cellular abundances for certain immune cell types within a new patient cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages, we consistently observe certain subsets respond more potently to interferon type I (IFN-I) and display increased cellular abundances across the spectrum of severity, as compared with healthy subjects. However, we identify these expanded subsets to have a more muted response to IFN-I within severe disease compared to non-severe disease. Our analyses further highlight an increased aggregation potential of the myeloid subsets, particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into the interaction between lymphoid and myeloid lineages, which contributes to the multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , COVID-19/diagnosis , Cell Differentiation , Cell Proliferation , Humans , Immunity, Innate , Interferon Type I/metabolism , Lymphopoiesis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Systemic Inflammatory Response Syndrome/diagnosis , T-Lymphocytes/metabolism , Thrombopoiesis
6.
mBio ; 12(5): e0233521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1430167

ABSTRACT

Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with astonishing mortality and morbidity. The high replication and transmission of SARS-CoV-2 are remarkably distinct from those of previous closely related coronaviruses, and the underlying molecular mechanisms remain unclear. The innate immune defense is a physical barrier that restricts viral replication. We report here that the SARS-CoV-2 Nsp5 main protease targets RIG-I and mitochondrial antiviral signaling (MAVS) protein via two distinct mechanisms for inhibition. Specifically, Nsp5 cleaves off the 10 most-N-terminal amino acids from RIG-I and deprives it of the ability to activate MAVS, whereas Nsp5 promotes the ubiquitination and proteosome-mediated degradation of MAVS. As such, Nsp5 potently inhibits interferon (IFN) induction by double-stranded RNA (dsRNA) in an enzyme-dependent manner. A synthetic small-molecule inhibitor blunts the Nsp5-mediated destruction of cellular RIG-I and MAVS and processing of SARS-CoV-2 nonstructural proteins, thus restoring the innate immune response and impeding SARS-CoV-2 replication. This work offers new insight into the immune evasion strategy of SARS-CoV-2 and provides a potential antiviral agent to treat CoV disease 2019 (COVID-19) patients. IMPORTANCE The ongoing COVID-19 pandemic is caused by SARS-CoV-2, which is rapidly evolving with better transmissibility. Understanding the molecular basis of the SARS-CoV-2 interaction with host cells is of paramount significance, and development of antiviral agents provides new avenues to prevent and treat COVID-19 diseases. This study describes a molecular characterization of innate immune evasion mediated by the SARS-CoV-2 Nsp5 main protease and subsequent development of a small-molecule inhibitor.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus 3C Proteases/metabolism , DEAD Box Protein 58/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Caco-2 Cells , Coronavirus 3C Proteases/genetics , DEAD Box Protein 58/genetics , Enzyme-Linked Immunosorbent Assay , HCT116 Cells , HEK293 Cells , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Immunoblotting , Interferon Type I/metabolism , Mice , Receptors, Immunologic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Ubiquitination , Virus Replication/genetics , Virus Replication/physiology
7.
J Virol ; 95(23): e0125721, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1410202

ABSTRACT

SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.


Subject(s)
COVID-19/metabolism , Cytokines/metabolism , Interferon Type I/metabolism , SARS-CoV-2 , Transcription Factor RelA/metabolism , Transcriptome , Virus Replication , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , Epigenomics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Host Microbial Interactions , Humans , Signal Transduction , Single-Cell Analysis , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/genetics , Transcription Factors/metabolism , Vero Cells
8.
Mil Med Res ; 8(1): 49, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398883

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication. The expression of the type I/III interferon (IFN) during infection was impaired in MDA5-/- and MAVS-/-, but not in RIG-I-/-, when compared to wild type (WT) cells. The mRNA level of full-length angiotensin-converting enzyme 2 (ACE2), the cellular entry receptor for SARS-CoV-2, was ~ 2.5-fold higher in RIG-I-/- than WT cells. These data demonstrate MDA5 as the predominant SARS-CoV-2 sensor, IFN-independent induction of ACE2 and anti-SARS-CoV-2 role of RIG-I in epithelial cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/physiology , Adaptor Proteins, Signal Transducing/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , DEAD Box Protein 58/genetics , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferons/metabolism , Receptors, Immunologic/genetics , Signal Transduction , Virus Replication
9.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394563

ABSTRACT

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/classification , Interferon Type I/metabolism , SARS-CoV-2/immunology , Adult , Aged, 80 and over , Asymptomatic Infections , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/virology , Epithelial Cells/cytology , Female , Hospitalization , Humans , Interferon Type I/immunology , Lung/cytology , Male , Middle Aged , Neuropilin-1/metabolism , Phenotype , Severity of Illness Index , Toll-Like Receptor 7/metabolism
10.
Front Immunol ; 12: 658428, 2021.
Article in English | MEDLINE | ID: covidwho-1389178

ABSTRACT

SARS-CoV-2 virus causes upper and lower respiratory diseases including pneumonia, and in some cases, leads to lethal pulmonary failure. Angiotensin converting enzyme-2 (ACE2), the receptor for cellular entry of SARS-CoV-2 virus, has been shown to protect against severe acute lung failure. Here, we provide evidence that SARS-CoV-2 spike protein S1 reduced the mRNA expression of ACE2 and type I interferons in primary cells of lung bronchoalveolar lavage (BAL) from naïve rhesus macaques. The expression levels of ACE2 and type I interferons were also found to be correlated with each other, consistent with the recent finding that ACE2 is an interferon-inducible gene. Furthermore, induction of ACE2 and type I interferons by poly I:C, an interferon inducer, was suppressed by S1 protein in primary cells of BAL. These observations suggest that the downregulation of ACE2 and type I interferons induced by S1 protein may directly contribute to SARS-CoV-2-associated lung diseases.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Interferon Type I/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Macaca mulatta , SARS-CoV-2
12.
Viruses ; 13(8)2021 08 16.
Article in English | MEDLINE | ID: covidwho-1376993

ABSTRACT

Given the impact of pandemics due to viruses of bat origin, there is increasing interest in comparative investigation into the differences between bat and human immune responses. The practice of comparative biology can be enhanced by computational methods used for dynamic knowledge representation to visualize and interrogate the putative differences between the two systems. We present an agent based model that encompasses and bridges differences between bat and human responses to viral infection: the comparative biology immune agent based model, or CBIABM. The CBIABM examines differences in innate immune mechanisms between bats and humans, specifically regarding inflammasome activity and type 1 interferon dynamics, in terms of tolerance to viral infection. Simulation experiments with the CBIABM demonstrate the efficacy of bat-related features in conferring viral tolerance and also suggest a crucial role for endothelial inflammasome activity as a mechanism for bat systemic viral tolerance and affecting the severity of disease in human viral infections. We hope that this initial study will inspire additional comparative modeling projects to link, compare, and contrast immunological functions shared across different species, and in so doing, provide insight and aid in preparation for future viral pandemics of zoonotic origin.


Subject(s)
Chiroptera/immunology , Immunity, Innate , Virus Diseases/immunology , Virus Diseases/veterinary , Animals , Chiroptera/virology , Computer Simulation , Endothelium/physiology , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interferon Type I/immunology , Interferon Type I/metabolism , Severity of Illness Index , Stress, Physiological , Viral Zoonoses , Virus Diseases/virology , Virus Physiological Phenomena , Virus Shedding
13.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374427

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Subject(s)
COVID-19/transmission , Coronavirus Nucleocapsid Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , SARS-CoV-2/pathogenicity , Animals , Binding Sites/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
14.
Cell Signal ; 87: 110121, 2021 11.
Article in English | MEDLINE | ID: covidwho-1370457

ABSTRACT

The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.


Subject(s)
COVID-19/pathology , Signal Transduction/physiology , Vitamin A/metabolism , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Central Nervous System/metabolism , DEAD Box Protein 58/metabolism , Humans , Immune Tolerance , Interferon Type I/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Viral Tropism/physiology , Vitamin A/blood
15.
Front Immunol ; 12: 695972, 2021.
Article in English | MEDLINE | ID: covidwho-1339498

ABSTRACT

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Subject(s)
COVID-19/immunology , Granulocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginine/administration & dosage , Arginine/blood , Arginine/metabolism , Asymptomatic Infections , COVID-19/blood , COVID-19/diagnosis , COVID-19/drug therapy , Case-Control Studies , Drug Therapy, Combination/methods , Enzyme Inhibitors/administration & dosage , Female , Granulocytes/metabolism , Healthy Volunteers , Humans , Interferon Type I/metabolism , Male , Middle Aged , Myeloid-Derived Suppressor Cells/metabolism , Severity of Illness Index , Signal Transduction/immunology , T-Lymphocytes/immunology
16.
J Virol ; 95(19): e0086221, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1309804

ABSTRACT

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/physiology , Janus Kinases/metabolism , SARS-CoV-2/metabolism , Cell Line , Gene Expression Regulation , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Janus Kinase 1/metabolism , Myocytes, Cardiac , Receptor, Interferon alpha-beta/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , Virus Replication
17.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1308364

ABSTRACT

Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. TRIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children and in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19 children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection.


Subject(s)
COVID-19/epidemiology , COVID-19/metabolism , Endogenous Retroviruses/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Child , Endogenous Retroviruses/genetics , Female , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferons/genetics , Interferons/metabolism , Italy/epidemiology , Male , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism
18.
Front Immunol ; 12: 700926, 2021.
Article in English | MEDLINE | ID: covidwho-1305649

ABSTRACT

RIG-I-like receptors (RLR), RIG-I and MDA5, are cytoplasmic viral RNA sensors that recognize viral double-stranded RNAs and trigger signals to induce antiviral responses, including type I interferon production. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 pandemic. However, the RLR role in innate immune response to SARS-CoV-2 has not been fully elucidated. Here, we studied the roles of RLR in cytokine expression responding to SARS-CoV-2 and found that not only MDA5 but also RIG-I are involved in innate immune responses in some types of human cells. Transfection of total RNAs extracted from SARS-CoV-2-infected cells into epithelial cells induced IFN-ß, IP-10, and Ccl5 mRNA expression. The cytokine expression was reduced by knockout of either RIG-I or MDA5, suggesting that both proteins are required for appropriate innate immune response to SARS-CoV-2. Two viral genomic RNA regions strongly induced type I IFN expression, and a 200-base fragment of viral RNA preferentially induced type I IFN in a RIG-I-dependent manner. In contrast, SARS-CoV-2 infectious particles hardly induced cytokine expression, suggesting viral escape from the host response. Viral 9b protein inhibited RIG-I and MAVS interaction, and viral 7a protein destabilized the TBK1 protein, leading to attenuated IRF-3 phosphorylation required for type I IFN expression. Our data elucidated the mechanism underlying RLR-mediated response to SARS-CoV-2 infection and viral escape from the host innate immune response.


Subject(s)
COVID-19/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Retinoic Acid/metabolism , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/immunology , Gene Knockdown Techniques , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Phosphorylation , RNA, Viral/immunology , Receptors, Retinoic Acid/genetics , Signal Transduction , Viral Matrix Proteins/metabolism
19.
Cell Rep ; 36(2): 109364, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1283971

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Receptors, Virus , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Cell Cycle , Cell Line, Tumor , Chlorocebus aethiops , Gene Expression Profiling , Heparitin Sulfate/metabolism , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Models, Biological , Protein Binding , Protein Domains , Proteomics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Internalization , Virus Replication
20.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1276011

ABSTRACT

Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1ß, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.


Subject(s)
Cell Hypoxia/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Monocytes/immunology , COVID-19/immunology , Cells, Cultured , Cytokines/immunology , Humans , Interferon Regulatory Factors/metabolism , Interferon Type I/immunology , Interferon Type I/metabolism , Interleukin-1beta/metabolism , Monocytes/metabolism , NF-kappa B/immunology , NF-kappa B/metabolism , Oxygen/metabolism , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...