Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1722548

ABSTRACT

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Subject(s)
COVID-19/immunology , Immunity, Innate/immunology , RNA Editing/immunology , SARS-CoV-2/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adenosine Deaminase/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Base Sequence , Binding Sites/genetics , COVID-19/genetics , COVID-19/virology , Evolution, Molecular , Gene Expression/immunology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Mutation , Protein Binding , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Nucleic Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
2.
Nat Commun ; 12(1): 6668, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526076

ABSTRACT

Our innate immune responses to viral RNA are vital defenses. Long cytosolic double-stranded RNA (dsRNA) is recognized by MDA5. The ATPase activity of MDA5 contributes to its dsRNA binding selectivity. Mutations that reduce RNA selectivity can cause autoinflammatory disease. Here, we show how the disease-associated MDA5 variant M854K perturbs MDA5-dsRNA recognition. M854K MDA5 constitutively activates interferon signaling in the absence of exogenous RNA. M854K MDA5 lacks ATPase activity and binds more stably to synthetic Alu:Alu dsRNA. CryoEM structures of MDA5-dsRNA filaments at different stages of ATP hydrolysis show that the K854 sidechain forms polar bonds that constrain the conformation of MDA5 subdomains, disrupting key steps in the ATPase cycle- RNA footprint expansion and helical twist modulation. The M854K mutation inhibits ATP-dependent RNA proofreading via an allosteric mechanism, allowing MDA5 to form signaling complexes on endogenous RNAs. This work provides insights on how MDA5 recognizes dsRNA in health and disease.


Subject(s)
Adenosine Triphosphate/metabolism , Inflammation/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Mutation, Missense , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunity, Innate/genetics , Inflammation/genetics , Interferon-Induced Helicase, IFIH1/chemistry , Interferon-Induced Helicase, IFIH1/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/genetics
3.
Mil Med Res ; 8(1): 49, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398883

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication. The expression of the type I/III interferon (IFN) during infection was impaired in MDA5-/- and MAVS-/-, but not in RIG-I-/-, when compared to wild type (WT) cells. The mRNA level of full-length angiotensin-converting enzyme 2 (ACE2), the cellular entry receptor for SARS-CoV-2, was ~ 2.5-fold higher in RIG-I-/- than WT cells. These data demonstrate MDA5 as the predominant SARS-CoV-2 sensor, IFN-independent induction of ACE2 and anti-SARS-CoV-2 role of RIG-I in epithelial cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/physiology , Adaptor Proteins, Signal Transducing/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , DEAD Box Protein 58/genetics , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferons/metabolism , Receptors, Immunologic/genetics , Signal Transduction , Virus Replication
5.
Nat Biotechnol ; 40(3): 319-324, 2022 03.
Article in English | MEDLINE | ID: covidwho-1364597

ABSTRACT

Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults.


Subject(s)
Bronchi/immunology , Bronchi/virology , COVID-19/immunology , COVID-19/virology , Immunity, Innate , SARS-CoV-2/immunology , Adolescent , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , DEAD Box Protein 58/metabolism , Dendritic Cells/immunology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Infant , Infant, Newborn , Interferon-Induced Helicase, IFIH1/metabolism , Macrophages/immunology , Male , Middle Aged , Receptors, Immunologic/metabolism , Single-Cell Analysis , T-Lymphocytes, Cytotoxic/immunology , Young Adult
6.
Front Immunol ; 12: 700926, 2021.
Article in English | MEDLINE | ID: covidwho-1305649

ABSTRACT

RIG-I-like receptors (RLR), RIG-I and MDA5, are cytoplasmic viral RNA sensors that recognize viral double-stranded RNAs and trigger signals to induce antiviral responses, including type I interferon production. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 pandemic. However, the RLR role in innate immune response to SARS-CoV-2 has not been fully elucidated. Here, we studied the roles of RLR in cytokine expression responding to SARS-CoV-2 and found that not only MDA5 but also RIG-I are involved in innate immune responses in some types of human cells. Transfection of total RNAs extracted from SARS-CoV-2-infected cells into epithelial cells induced IFN-ß, IP-10, and Ccl5 mRNA expression. The cytokine expression was reduced by knockout of either RIG-I or MDA5, suggesting that both proteins are required for appropriate innate immune response to SARS-CoV-2. Two viral genomic RNA regions strongly induced type I IFN expression, and a 200-base fragment of viral RNA preferentially induced type I IFN in a RIG-I-dependent manner. In contrast, SARS-CoV-2 infectious particles hardly induced cytokine expression, suggesting viral escape from the host response. Viral 9b protein inhibited RIG-I and MAVS interaction, and viral 7a protein destabilized the TBK1 protein, leading to attenuated IRF-3 phosphorylation required for type I IFN expression. Our data elucidated the mechanism underlying RLR-mediated response to SARS-CoV-2 infection and viral escape from the host innate immune response.


Subject(s)
COVID-19/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Retinoic Acid/metabolism , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/immunology , Gene Knockdown Techniques , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Phosphorylation , RNA, Viral/immunology , Receptors, Retinoic Acid/genetics , Signal Transduction , Viral Matrix Proteins/metabolism
7.
Cell Rep ; 36(2): 109364, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1283971

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Receptors, Virus , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Cell Cycle , Cell Line, Tumor , Chlorocebus aethiops , Gene Expression Profiling , Heparitin Sulfate/metabolism , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Models, Biological , Protein Binding , Protein Domains , Proteomics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Internalization , Virus Replication
8.
Front Immunol ; 12: 662989, 2021.
Article in English | MEDLINE | ID: covidwho-1256380

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of current COVID-19 pandemic, and insufficient production of type I interferon (IFN-I) is associated with the severe forms of the disease. Membrane (M) protein of SARS-CoV-2 has been reported to suppress host IFN-I production, but the underlying mechanism is not completely understood. In this study, SARS-CoV-2 M protein was confirmed to suppress the expression of IFNß and interferon-stimulated genes induced by RIG-I, MDA5, IKKϵ, and TBK1, and to inhibit IRF3 phosphorylation and dimerization caused by TBK1. SARS-CoV-2 M could interact with MDA5, TRAF3, IKKϵ, and TBK1, and induce TBK1 degradation via K48-linked ubiquitination. The reduced TBK1 further impaired the formation of TRAF3-TANK-TBK1-IKKε complex that leads to inhibition of IFN-I production. Our study revealed a novel mechanism of SARS-CoV-2 M for negative regulation of IFN-I production, which would provide deeper insight into the innate immunosuppression and pathogenicity of SARS-CoV-2.


Subject(s)
Interferon Type I/biosynthesis , SARS-CoV-2/immunology , Ubiquitin/metabolism , Viral Matrix Proteins/immunology , DEAD Box Protein 58/metabolism , HEK293 Cells , Humans , I-kappa B Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Proteolysis , Receptors, Immunologic/metabolism , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism
9.
Biochem J ; 478(10): 1853-1859, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1232077

ABSTRACT

The current SARS-CoV-2 pandemic has spurred new interest in interferon signaling in response to viral pathogens. Much of what we know about the signaling molecules and associated signal transduction induced during the host cellular response to viral pathogens has been gained from research conducted from the 1990's to the present day, but certain intricacies of the mechanisms involved, still remain unclear. In a recent study by Vaughn et al. the authors examine one of the main mechanisms regulating interferon induction following viral infection, the RIG-I/MAVS/IRF3 pathway, and find that similar to PKR both DICER interacting proteins, PACT and TRBP, regulate RIG-I signaling in an opposing manner. More specifically, the reported findings demonstrate, like others, that PACT stimulates RIG-I-mediated signaling in a manner independent of PACT dsRNA-binding ability or phosphorylation at sites known to be important for PACT-dependent PKR activation. In contrast, they show for the first time that TRBP inhibits RIG-I-mediated signaling. RIG-I inhibition by TRBP did not require phosphorylation of sites shown to be important for inhibiting PKR, nor did it involve PACT or PKR, but it did require the dsRNA-binding ability of TRBP. These findings open the door to a complex co-regulation of RIG-I, PKR, MDA5, miRNA processing, and interferon induction.


Subject(s)
COVID-19/immunology , Interferons/metabolism , SARS-CoV-2/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
10.
Int Immunopharmacol ; 96: 107671, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1227634

ABSTRACT

Chlorogenic acid (CGA) is a phenolic compound that has been well studied for its antiviral, anti-inflammatory and immune stimulating properties. This research was aimed to focus on the antiviral properties of CGA on infectious bronchitis virus (IBV) in vivo and in vitro for the very first time. The outcome of in vitro experiments validated that, out of five previously reported antiviral components, CGA significantly reduced the relative mRNA expression of IBV-N in CEK cells. At high concentration (400 mg/kg), CGA supplementation reduced IBV-N mRNA expression levels and ameliorated the injury in trachea and lungs. The mRNA expression levels of IL-6, IL-1ß, IL-12, and NF-κB were considerably turned down, but IL-22 and IL-10 were enhanced in trachea. However, CGA-H treatment had considerably increased the expression levels of MDA5, MAVS, TLR7, MyD88, IRF7, IFN-ß and IFN-α both in trachea and lungs. Moreover, CGA-H notably induced the CD3+, CD3+ CD4+ and CD4+/CD8+ proliferation and significantly increased the IgA, IgG, and IgM levels in the serum. In conclusion, these results showed that at high concentration CGA is a strong anti-IBV compound that can effectively regulate the innate immunity through MDA5, TLR7 and NF-κB signaling pathways and have the potential to induce the cell mediated and humoral immune response in IBV infected chickens.


Subject(s)
Chlorogenic Acid/pharmacology , Coronavirus Infections/drug therapy , Gammacoronavirus/drug effects , Interferon-Induced Helicase, IFIH1/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 7/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Cells, Cultured , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Gammacoronavirus/immunology , Gammacoronavirus/isolation & purification , Immunity, Innate , Interferon-Induced Helicase, IFIH1/genetics , NF-kappa B/genetics , Toll-Like Receptor 7/genetics
11.
Nat Microbiol ; 6(4): 467-478, 2021 04.
Article in English | MEDLINE | ID: covidwho-1137784

ABSTRACT

Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Cytokines/metabolism , Immunity, Innate , Interferon-Induced Helicase, IFIH1/antagonists & inhibitors , SARS-CoV-2/enzymology , SARS-CoV-2/immunology , Ubiquitins/metabolism , Aedes , Animals , Chlorocebus aethiops , Cricetinae , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1/metabolism , Leukocytes, Mononuclear , Mice , Vero Cells
12.
Cell Mol Immunol ; 18(4): 945-953, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104474

ABSTRACT

SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-ß promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.


Subject(s)
COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , SARS-CoV-2/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Mutation , Phosphorylation , Promoter Regions, Genetic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , SARS-CoV-2/enzymology , Sendai virus/metabolism
13.
Cell Rep ; 34(2): 108628, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1036973

ABSTRACT

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.


Subject(s)
Immunity, Innate , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Cell Line , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/cytology , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , RNA Helicases/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Signal Transduction , Transcription Factor RelA/metabolism , Virus Replication
14.
Signal Transduct Target Ther ; 5(1): 299, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-997814

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.


Subject(s)
COVID-19/metabolism , DEAD Box Protein 58/metabolism , Interferon Type I/biosynthesis , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/biosynthesis , SARS-CoV-2/metabolism , Signal Transduction , Viral Matrix Proteins/metabolism , Animals , COVID-19/genetics , Chlorocebus aethiops , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Humans , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferons/genetics , Receptors, Immunologic , SARS-CoV-2/genetics , Vero Cells , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL