Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
FASEB J ; 36(8): e22481, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2018110

ABSTRACT

Sedatives/anesthetics are important medical tools to facilitate medical care and increase patients' comfort. Increasingly, there is recognition that sedatives/anesthetics can modulate immune functions. Toll-like receptors (TLRs) are major pattern recognition receptors involved in the recognition of microbial components. TLR7 recognizes single-strand RNA virus such as influenza and SARS-CoV2 viruses and initiates interferon (IFN) responses. IFN production triggered by TLR7 stimulation is a critical anti-viral response. For example, patients with TLR7 variants including loss-of- function variants were associated with severe COVID-19. Taken together, it is important to determine if sedatives/anesthetics mitigate TLR7 function. We have previously showed that TLR7-mediated activation was not affected by volatile anesthetics. However, we found that propofol attenuated TLR7 activation among intravenous sedatives in the reporter assay. TLR7 agonist R837 stimulation increased TNF-α, IL-1ß, IL-6, IL-10, and IFN-ß mRNA levels in bone marrow-derived dendritic cells, while these levels were attenuated by propofol. Our murine lung slice experiments showed that propofol attenuated IFN production. R837 increased IFN-ß expression in the lungs, and propofol attenuated IFN-ß expression in an in vivo model of R837 intranasal instillation. We also found that propofol directly bound to and hindered its association of TLR7 with MyD88. Our analysis using fropofol, propofol derivative showed that the hydroxyl group in propofol was important for propofol-TLR7 interaction.


Subject(s)
COVID-19 , Propofol , Animals , Dendritic Cells , Humans , Hypnotics and Sedatives/pharmacology , Imiquimod , Interferon-alpha/metabolism , Interferon-beta/metabolism , Mice , Propofol/analogs & derivatives , Propofol/pharmacology , RNA, Viral/metabolism , SARS-CoV-2 , Toll-Like Receptor 7
2.
Cytokine ; 157: 155971, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1956118

ABSTRACT

Natural Killer cells (NK) are crucial in host defense against viruses. There are many unanswered questions about the immune system in COVID-19, especially the mechanisms that contribute to the development of mild or severe forms of the disease. Although NK cells may have an essential role in the pathogenesis of COVID-19, the mechanisms involved in this process are not yet fully elucidated. Here, we demonstrate that CD3-CD56+ NK cells frequency in the volunteers who recovered from mild COVID-19 (Mild CoV) presented a significant increase compared to the healthy control (HC) and individuals recovering from severe COVID-19 (Severe CoV) groups. Furthermore, distinct IFN profiles in recovered COVID-19 patients with mild or severe clinical forms of the disease were observed in the total NK cells (CD3-CD56+). In the first group, NK cells express increased levels of IFN-α compared to the severe CoV, while higher production of IFN-γ in severe CoV was found. Moreover, NK cells in mild CoV express more cytolytic granules depicted by granzyme B and perforin. Compared to HC, PBMCs from mild CoV presented higher Ki-67 and TIM-3 production after Pool CoV-2 and Pool Spike CoV-2 peptides stimulus. In addition, non-stimulated PBMCs in the mild CoV group had higher NK TIM-3+ frequency than severe CoV. In the mild CoV group, Pool Spike CoV-2 and Pool CoV-2 peptides stimuli elicited higher granzyme B and perforin coexpression and IFN-α production by PBMCs. However, in severe CoV, Pool Spike CoV-2 reduced the coexpression of granzyme B, perforin, and CD107a suggesting a decrease in the cytotoxic activity of NK cells. Therefore, our study shows that NK cells may have a crucial role in COVID-19 with the involvement of IFN-α and cytotoxic properties that aid in developing qualified immune responses. Furthermore, the data suggest that higher amounts of IFN-γ may be linked to the severity of this disease.


Subject(s)
Antineoplastic Agents , COVID-19 , Granzymes , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Interferon-alpha/metabolism , Killer Cells, Natural , Perforin/metabolism
3.
Front Immunol ; 13: 934264, 2022.
Article in English | MEDLINE | ID: covidwho-1952335

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for COVID-19, has caused a global pandemic. Observational studies revealed a condition, herein called as Long-COVID syndrome (PC), that affects both moderately and severely infected patients, reducing quality-of-life. The mechanism/s underlying the onset of fibrotic-like changes in PC are still not well defined. The goal of this study was to understand the involvement of the Absent in melanoma-2 (AIM2) inflammasome in PC-associated lung fibrosis-like changes revealed by chest CT scans. Peripheral blood mononuclear cells (PBMCs) obtained from PC patients who did not develop signs of lung fibrosis were not responsive to AIM2 activation by Poly dA:dT. In sharp contrast, PBMCs from PC patients with signs of lung fibrosis were highly responsive to AIM2 activation, which induced the release of IL-1α, IFN-α and TGF-ß. The recognition of Poly dA:dT was not due to the activation of cyclic GMP-AMP (cGAMP) synthase, a stimulator of interferon response (cGAS-STING) pathways, implying a role for AIM2 in PC conditions. The release of IFN-α was caspase-1- and caspase-4-dependent when AIM2 was triggered. Instead, the release of pro-inflammatory IL-1α and pro-fibrogenic TGF-ß were inflammasome independent because the inhibition of caspase-1 and caspase-4 did not alter the levels of the two cytokines. Moreover, the responsiveness of AIM2 correlated with higher expression of the receptor in circulating CD14+ cells in PBMCs from patients with signs of lung fibrosis.


Subject(s)
COVID-19 , DNA-Binding Proteins , Pulmonary Fibrosis , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Carrier Proteins , Caspase 1/immunology , DNA-Binding Proteins/blood , DNA-Binding Proteins/immunology , Humans , Inflammasomes/blood , Inflammasomes/immunology , Interferon-alpha/metabolism , Leukocytes, Mononuclear/immunology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Transforming Growth Factor beta/metabolism
4.
Biomolecules ; 12(6)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1911170

ABSTRACT

Pathogenesis-related (PR) proteins produced in plants play a crucial role in self-defense against microbial attacks. Previously, we have identified a novel PR-1-like protein (OPRP) from Oenanthe javanica and examined its pharmacologic relevance and cell signaling in mammalian cells. Purified full-length OPRP protein significantly increased toll-like receptor 4 (TLR4)-dependent expression levels of genes such as inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and CD80. We also found that small peptides (OPRP2 and OPRP3) designed from OPRP remarkably upregulated myxovirus resistance (Mx1), 2'-5' oligoadenylate sythetase (OAS), and interferon (IFN) α/ß genes in mouse splenocytes as well as human epithelial cells. Notably, OPRP protein distinctively activated STAT1 phosphorylation and ISGF-3γ. Interestingly, OPRP2 and OPRP3 were internalized to the cytoplasm and triggered dimerization of STAT1/STAT2, followed by upregulation of type I IFN-dependent antiviral cytokines. Moreover, OPRP1 successfully inhibited viral (Pseudo SARS-CoV-2) entry into host cells. Taken together, we conclude that OPRP and its small peptides (OPRP1 to 3) present a new therapeutic intervention for modulating innate immune activity through type I IFN-dependent antiviral signaling and a new therapeutic approach that drives an antiviral state in non-immune cells by producing antiviral cytokines.


Subject(s)
Antiviral Agents , Immunity, Innate , Oenanthe , Plant Proteins , Animals , Antiviral Agents/pharmacology , Cytokines/metabolism , Humans , Interferon-alpha/metabolism , Interferon-beta/metabolism , Mice , Oenanthe/metabolism , Plant Proteins/pharmacology , Signal Transduction
5.
Viruses ; 14(4)2022 03 23.
Article in English | MEDLINE | ID: covidwho-1818212

ABSTRACT

Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.


Subject(s)
Interferon-alpha , Janus Kinases , Middle East Respiratory Syndrome Coronavirus , SARS Virus , STAT Transcription Factors , Antiviral Agents/pharmacology , COVID-19 , Epithelial Cells/metabolism , Humans , Interferon-alpha/metabolism , Janus Kinases/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS Virus/metabolism , SARS-CoV-2 , STAT Transcription Factors/metabolism , Signal Transduction , Viral Proteins/metabolism
6.
PLoS One ; 16(10): e0258856, 2021.
Article in English | MEDLINE | ID: covidwho-1542176

ABSTRACT

Hypoxia is a common pathway to the progression of end-stage kidney disease. Retinoic acid-inducible gene I (RIG-I) encodes an RNA helicase that recognizes viruses including SARS-CoV2, which is responsible for the production of interferon (IFN)-α/ß to prevent the spread of viral infection. Recently, RIG-I activation was found under hypoxic conditions, and klotho deficiency was shown to intensify the activation of RIG-I in mouse brains. However, the roles of these functions in renal inflammation remain elusive. Here, for in vitro study, the expression of RIG-I and IFN-α/ß was examined in normal rat kidney (NRK)-52E cells incubated under hypoxic conditions (1% O2). Next, siRNA targeting RIG-I or scramble siRNA was transfected into NRK52E cells to examine the expression of RIG-I and IFN-α/ß under hypoxic conditions. We also investigated the expression levels of RIG-I and IFN-α/ß in 33 human kidney biopsy samples diagnosed with IgA nephropathy. For in vivo study, we induced renal hypoxia by clamping the renal artery for 10 min in wild-type mice (WT mice) and Klotho-knockout mice (Kl-/- mice). Incubation under hypoxic conditions increased the expression of RIG-I and IFN-α/ß in NRK52E cells. Their upregulation was inhibited in NRK52E cells transfected with siRNA targeting RIG-I. In patients with IgA nephropathy, immunohistochemical staining of renal biopsy samples revealed that the expression of RIG-I was correlated with that of IFN-α/ß (r = 0.57, P<0.001, and r = 0.81, P<0.001, respectively). The expression levels of RIG-I and IFN-α/ß were upregulated in kidneys of hypoxic WT mice and further upregulation was observed in hypoxic Kl-/- mice. These findings suggest that hypoxia induces the expression of IFN-α/ß through the upregulation of RIG-I, and that klotho deficiency intensifies this hypoxia-induced expression in kidneys.


Subject(s)
Glucuronidase/metabolism , Hypoxia/metabolism , Interferon-alpha/metabolism , Kidney/metabolism , RNA Helicases/metabolism , Up-Regulation , Animals , Glucuronidase/genetics , Hypoxia/genetics , Mice , Mice, Knockout , RNA, Small Interfering , Rats
7.
J Virol ; 95(14): e0011121, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1358015

ABSTRACT

The current fears of a future influenza pandemic have resulted in an increased emphasis on the development and testing of novel therapeutic strategies against the virus. Fundamental to this is the ferret model of influenza infection, which is critical in examining pathogenesis and treatment. Nevertheless, a precise evaluation of the efficacy of any treatment strategy in ferrets is reliant on understanding the immune response in this model. Interferon-inducible transmembrane proteins (IFITMs) are interferon-stimulated proteins shown to be critically important in the host immune response against viral infections. These proteins confer intrinsic innate immunity to pH-dependent viruses such as influenza viruses and can inhibit cytosolic entry of such viruses to limit the severity of infection following interferon upregulation. Mutations in IFITM genes in humans have been identified as key risk factors for worsened disease progression, particularly in the case of avian influenza viruses such as H7N9. While the IFITM genes of humans and mice have been well characterized, no studies have been conducted to classify the IFITM locus and interferon-driven upregulation of IFITMs in ferrets. Here, we show the architecture of the ferret IFITM locus and its synteny to the IFITM locus of other mammalian and avian species. Furthermore, we show that ferret IFITM1, -2, and -3 are functionally responsive to both interferon-α (IFN-α) and influenza virus stimulation. Thus, we show that ferret IFITMs exhibit interferon-stimulated properties similar to those shown in other species, furthering our knowledge of the innate immune response in the ferret model of human influenza virus infections. IMPORTANCE IFITM proteins can prevent the entry of several pH-dependent viruses, including high-consequence viruses such as HIV, influenza viruses, and SARS-coronaviruses. Mutations in these genes have been associated with worsened disease outcomes with mutations in their IFITM genes, highlighting these genes as potential disease risk factors. Ferrets provide a valuable tool to model infectious diseases; however, there is a critical shortage of information regarding their interferon-stimulated genes. We identified the putative ferret IFITM genes and mapped their complete gene locus. Thus, our study fills a critical gap in knowledge and supports the further use of the ferret model to explore the importance of IFITMs in these important diseases.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Interferon-alpha/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Orthomyxoviridae Infections/immunology , Animals , Cell Line , Conserved Sequence , Disease Models, Animal , Ferrets/immunology , Ferrets/metabolism , Ferrets/virology , Humans , Models, Molecular , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Polymerase Chain Reaction , Sequence Analysis, Protein , Up-Regulation
8.
J Virol ; 95(14): e0011121, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1287245

ABSTRACT

The current fears of a future influenza pandemic have resulted in an increased emphasis on the development and testing of novel therapeutic strategies against the virus. Fundamental to this is the ferret model of influenza infection, which is critical in examining pathogenesis and treatment. Nevertheless, a precise evaluation of the efficacy of any treatment strategy in ferrets is reliant on understanding the immune response in this model. Interferon-inducible transmembrane proteins (IFITMs) are interferon-stimulated proteins shown to be critically important in the host immune response against viral infections. These proteins confer intrinsic innate immunity to pH-dependent viruses such as influenza viruses and can inhibit cytosolic entry of such viruses to limit the severity of infection following interferon upregulation. Mutations in IFITM genes in humans have been identified as key risk factors for worsened disease progression, particularly in the case of avian influenza viruses such as H7N9. While the IFITM genes of humans and mice have been well characterized, no studies have been conducted to classify the IFITM locus and interferon-driven upregulation of IFITMs in ferrets. Here, we show the architecture of the ferret IFITM locus and its synteny to the IFITM locus of other mammalian and avian species. Furthermore, we show that ferret IFITM1, -2, and -3 are functionally responsive to both interferon-α (IFN-α) and influenza virus stimulation. Thus, we show that ferret IFITMs exhibit interferon-stimulated properties similar to those shown in other species, furthering our knowledge of the innate immune response in the ferret model of human influenza virus infections. IMPORTANCE IFITM proteins can prevent the entry of several pH-dependent viruses, including high-consequence viruses such as HIV, influenza viruses, and SARS-coronaviruses. Mutations in these genes have been associated with worsened disease outcomes with mutations in their IFITM genes, highlighting these genes as potential disease risk factors. Ferrets provide a valuable tool to model infectious diseases; however, there is a critical shortage of information regarding their interferon-stimulated genes. We identified the putative ferret IFITM genes and mapped their complete gene locus. Thus, our study fills a critical gap in knowledge and supports the further use of the ferret model to explore the importance of IFITMs in these important diseases.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Interferon-alpha/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Orthomyxoviridae Infections/immunology , Animals , Cell Line , Conserved Sequence , Disease Models, Animal , Ferrets/immunology , Ferrets/metabolism , Ferrets/virology , Humans , Models, Molecular , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Polymerase Chain Reaction , Sequence Analysis, Protein , Up-Regulation
9.
Viruses ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: covidwho-1244141

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) predominantly have a respiratory tract infection with various symptoms and high mortality is associated with respiratory failure second to severe disease. The risk factors leading to severe disease remain unclear. Here, we reanalyzed a published single-cell RNA-Seq (scRNA-Seq) dataset and found that bronchoalveolar lavage fluid (BALF) of patients with severe disease compared to those with mild disease contained decreased TH17-type cells, decreased IFNA1-expressing cells with lower expression of toll-like receptor 7 (TLR7) and TLR8, increased IgA-expressing B cells, and increased hyperactive epithelial cells (and/or macrophages) expressing matrix metalloproteinases (MMPs), hyaluronan synthase 2 (HAS2), and plasminogen activator inhibitor-1 (PAI-1), which may together contribute to the pulmonary pathology in severe COVID-19. We propose IFN-I (and TLR7/TLR8) and PAI-1 as potential biomarkers to predict the susceptibility to severe COVID-19.


Subject(s)
COVID-19/pathology , Lung/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/immunology , COVID-19/immunology , COVID-19/metabolism , Databases, Genetic , Humans , Hyaluronan Synthases/metabolism , Immunoglobulin A/metabolism , Interferon-alpha/metabolism , Lung/immunology , Lung/metabolism , Matrix Metalloproteinases/metabolism , Mucin-1/metabolism , Plasminogen Activator Inhibitor 1/metabolism , RNA-Seq , SARS-CoV-2 , Th17 Cells/metabolism , Th17 Cells/pathology
10.
Front Immunol ; 12: 635018, 2021.
Article in English | MEDLINE | ID: covidwho-1211810

ABSTRACT

Objective: Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods: Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results: CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion: Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.


Subject(s)
Arthritis, Psoriatic/complications , COVID-19/complications , Dendritic Cells/metabolism , Interferon-alpha/metabolism , Janus Kinases/antagonists & inhibitors , Adjuvants, Immunologic/pharmacology , Adult , Aged , COVID-19/genetics , COVID-19/metabolism , Computational Biology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dendritic Cells/drug effects , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Imiquimod/pharmacology , Janus Kinases/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Oligonucleotides/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
11.
Science ; 371(6528): 521-526, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1093836

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Subject(s)
Adenoviridae/immunology , Immunogenicity, Vaccine , Mucosal-Associated Invariant T Cells/immunology , Viral Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Genetic Vectors/immunology , Humans , Interferon-alpha/metabolism , Interleukin-18/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
12.
Immunohorizons ; 5(2): 70-80, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1067831

ABSTRACT

Tyrosine kinase 2 (TYK2) is a member of the JAK family of nonreceptor tyrosine kinase, together with JAK1, JAK2, and JAK3. JAKs are important signaling mediators of many proinflammatory cytokines and represent compelling pharmacological targets for autoimmune and inflammatory diseases. Pan-acting small-molecule JAK inhibitors were approved for the treatment of rheumatoid arthritis and ulcerative colitis. However, their limited selectivity among JAK members have led to undesirable side effects, driving a search toward specific JAK inhibitors. Recently, TYK2 has emerged as a target of choice for the treatment of autoimmune diseases and severe COVID-19 with an optimum balance between efficacy and safety, based on observations from human genetics studies and clinical outcomes of several agents targeting cytokine pathways for which TYK2 plays an essential role. In this article, we address selective targeting of TYK2 from the genetic sequence space through development of antisense oligonucleotides (ASOs) against TYK2 mRNA. Potent ASO candidates were identified from the screening of over 200 ASOs using locked nucleic acid gapmer design. The lead ASOs exhibited potent and selective knockdown of TYK2 mRNA and protein across a panel of model human cell lines in a dose-dependent manner, showing no reduction in the mRNA and protein expression levels of other JAK paralogs. In agreement with the depletion of TYK2 proteins, several TYK2-mediated cytokine signaling pathways, including IFN-α and IL-12, were inhibited upon ASO treatment. Our results established the TYK2 ASOs as investigational tool compound and potential therapeutic agent for the treatment of autoimmune diseases and severe COVID-19.


Subject(s)
Autoimmune Diseases/drug therapy , COVID-19/drug therapy , Janus Kinase Inhibitors/therapeutic use , Oligonucleotides, Antisense/genetics , RNA, Messenger/genetics , SARS-CoV-2/physiology , TYK2 Kinase/genetics , Disease Progression , Gene Knockdown Techniques , Humans , Interferon-alpha/metabolism , Interleukin-12/metabolism , Jurkat Cells , Molecular Targeted Therapy , Oligonucleotides, Antisense/therapeutic use , Signal Transduction
13.
Cell Rep ; 33(7): 108407, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-927290

ABSTRACT

Individuals with Down syndrome (DS; trisomy 21) display hyperactivation of interferon (IFN) signaling and chronic inflammation, which could potentially be explained by the extra copy of four IFN receptor (IFNR) genes encoded on chromosome 21. However, the clinical effects of IFN hyperactivity in DS remain undefined. Here, we report that a commonly used mouse model of DS overexpresses IFNR genes and shows hypersensitivity to IFN ligands in diverse immune cell types. When treated repeatedly with a TLR3 agonist to induce chronic inflammation, these animals overexpress key IFN-stimulated genes, induce cytokine production, exhibit liver pathology, and undergo rapid weight loss. Importantly, the lethal immune hypersensitivity and cytokine production and the ensuing pathology are ameliorated by JAK1 inhibition. These results indicate that individuals with DS may experience harmful hyperinflammation upon IFN-inducing immune stimuli, as observed during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, pointing to JAK1 inhibition as a strategy to restore immune homeostasis in DS.


Subject(s)
Azetidines/therapeutic use , Down Syndrome/immunology , Hypersensitivity/drug therapy , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Animals , Down Syndrome/complications , Female , Hypersensitivity/etiology , Hypersensitivity/immunology , Immunity, Innate , Interferon-alpha/metabolism , Liver/immunology , Male , Mice , Mice, Inbred C57BL , Purines , Pyrazoles , Toll-Like Receptors/metabolism
14.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: covidwho-772280

ABSTRACT

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero E6 and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, whereas SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures, we observe the absence of IFN-I stimulation by SARS-CoV-2 alone but detect the failure to counteract STAT1 phosphorylation upon IFN-I pretreatment, resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment postinfection and found that SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame 3b (ORF3b) and genetic differences versus ORF6 suggest that the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.IMPORTANCE With the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Interferon Type I/pharmacology , Interferon-alpha/pharmacology , SARS Virus/drug effects , Animals , Antiviral Agents/antagonists & inhibitors , Antiviral Agents/metabolism , Betacoronavirus/immunology , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/immunology , Interferon-alpha/metabolism , Phosphorylation , Recombinant Proteins/pharmacology , SARS Virus/immunology , SARS Virus/physiology , SARS-CoV-2 , STAT1 Transcription Factor/metabolism , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
15.
Cytokine ; 136: 155221, 2020 12.
Article in English | MEDLINE | ID: covidwho-720486

ABSTRACT

ANCA-associated RPGN leads to renal failure through systemic vasculitis and diffuse crescentic glomerulonephritis. MPO-ANCA-RPGN patients are highly susceptible to infections. Our aim in this study was to uncover reasons why these patients were susceptible to infections. We analyzed various aspects of type I interferon system including HVJ-stimulated IFN-α producing capacity and plasmacytoid dendritic cell (pDC) number in whole blood in MPO-ANCA-RPGN patients. Compared with healthy subjects, MPO-ANCA-RPGN patients showed impaired HVJ-stimulated IFN-α producing capacity and lower pDC number with or without glucocorticoid treatment. Immuno-histological staining of MPO-ANCA-RPGN kidney samples revealed a few but apparent pDC in T cell infiltrating regions even in patients with low pDC number in their peripheral blood. Patients' low HVJ-stimulated IFN-α producing capacity and pDC numbers persisted even after patients underwent several years of treatment. Former infection was determined using patients' serum BPI, Lamp-2 and Calprotectin, since they are reflective of a history of infection. These markers were higher in MPO-ANCA-RPGN patients than in healthy subjects. These results indicate that impaired HVJ-stimulated IFN-α production as well as dysfunction of the IFN system might have resulted from a previous bout of infection and can be partially implicated in patients' long-term susceptibility and vulnerability to infection.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Dendritic Cells/immunology , Interferon-alpha/immunology , Sendai virus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Antibodies, Antineutrophil Cytoplasmic/blood , Antibodies, Antineutrophil Cytoplasmic/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Female , Humans , Interferon-alpha/metabolism , Male , Middle Aged , Sendai virus/metabolism
16.
Science ; 369(6504): 718-724, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-641396

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression that suggest diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A distinct phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-ß and low IFN-α production and activity), which was associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor nuclear factor-κB and characterized by increased tumor necrosis factor-α and interleukin-6 production and signaling. These data suggest that type I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon alpha-2/metabolism , Interferon-alpha/metabolism , Interferon-beta/metabolism , Pneumonia, Viral/immunology , Adult , Aged , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Critical Illness , Cross-Sectional Studies , Female , Gene Expression Profiling , Humans , Immunity, Innate , Inflammation , Interleukin-6/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load
17.
Science ; 369(6504): 712-717, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-594812

ABSTRACT

Excessive cytokine signaling frequently exacerbates lung tissue damage during respiratory viral infection. Type I (IFN-α and IFN-ß) and III (IFN-λ) interferons are host-produced antiviral cytokines. Prolonged IFN-α and IFN-ß responses can lead to harmful proinflammatory effects, whereas IFN-λ mainly signals in epithelia, thereby inducing localized antiviral immunity. In this work, we show that IFN signaling interferes with lung repair during influenza recovery in mice, with IFN-λ driving these effects most potently. IFN-induced protein p53 directly reduces epithelial proliferation and differentiation, which increases disease severity and susceptibility to bacterial superinfections. Thus, excessive or prolonged IFN production aggravates viral infection by impairing lung epithelial regeneration. Timing and duration are therefore critical parameters of endogenous IFN action and should be considered carefully for IFN therapeutic strategies against viral infections such as influenza and coronavirus disease 2019 (COVID-19).


Subject(s)
Alveolar Epithelial Cells/pathology , Cytokines/metabolism , Interferon Type I/metabolism , Interferons/metabolism , Lung/pathology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Alveolar Epithelial Cells/immunology , Animals , Apoptosis , Bronchoalveolar Lavage Fluid/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/administration & dosage , Cytokines/immunology , Female , Influenza A Virus, H3N2 Subtype , Interferon Type I/administration & dosage , Interferon Type I/pharmacology , Interferon-alpha/administration & dosage , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Interferon-beta/administration & dosage , Interferon-beta/metabolism , Interferon-beta/pharmacology , Interferons/administration & dosage , Interferons/pharmacology , Male , Mice , Orthomyxoviridae Infections/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL