Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 591(7848): 124-130, 2021 03.
Article in English | MEDLINE | ID: covidwho-1368933

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunology
2.
Front Immunol ; 12: 708264, 2021.
Article in English | MEDLINE | ID: covidwho-1325532

ABSTRACT

There are still many unanswered questions concerning viral SARS-CoV-2 pathogenesis in COVID-19. Accessory proteins in SARS-CoV-2 consist of eleven viral proteins whose roles during infection are still not completely understood. Here, a review on the current knowledge of SARS-CoV-2 accessory proteins is summarized updating new research that could be critical in understanding SARS-CoV-2 interaction with the host. Some accessory proteins such as ORF3b, ORF6, ORF7a and ORF8 have been shown to be important IFN-I antagonists inducing an impairment in the host immune response. In addition, ORF3a is involved in apoptosis whereas others like ORF9b and ORF9c interact with cellular organelles leading to suppression of the antiviral response in infected cells. However, possible roles of ORF7b and ORF10 are still awaiting to be described. Also, ORF3d has been reassigned. Relevant information on the knowns and the unknowns in these proteins is analyzed, which could be crucial for further understanding of SARS-CoV-2 pathogenesis and to design strategies counteracting their actions evading immune responses in COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , Viral Regulatory and Accessory Proteins/immunology , COVID-19/pathology , Coronavirus/metabolism , Coronavirus/pathogenicity , Humans , Immune Evasion , Immunity , Interferons/antagonists & inhibitors , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/metabolism
3.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1304592

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
4.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1295641

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
5.
Trends Microbiol ; 29(11): 973-982, 2021 11.
Article in English | MEDLINE | ID: covidwho-1142259

ABSTRACT

Pandemics are caused by novel pathogens to which pre-existing antibody immunity is lacking. Under these circumstances, the body must rely on innate interferon-mediated defenses to limit pathogen replication and allow development of critical humoral protection. Here, we highlight studies on disease susceptibility during H1N1 influenza and COVID-19 (SARS-CoV-2) pandemics. An emerging concept is that genetic and non-genetic deficiencies in interferon system components lead to uncontrolled virus replication and severe illness in a subset of people. Intriguingly, new findings suggest that individuals with autoantibodies neutralizing the antiviral function of interferon are at increased risk of severe COVID-19. We discuss key questions surrounding how such autoantibodies develop and function, as well as the general implications of diagnosing interferon deficiencies for personalized therapies.


Subject(s)
Disease Resistance , Host-Pathogen Interactions , Interferons/metabolism , Virus Diseases/etiology , Virus Diseases/metabolism , Alleles , Animals , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Autoimmunity , Disease Progression , Disease Resistance/immunology , Disease Susceptibility , Genetic Predisposition to Disease , Host-Pathogen Interactions/immunology , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Loss of Function Mutation , Polymorphism, Single Nucleotide , Severity of Illness Index , Virus Diseases/diagnosis , Virus Diseases/epidemiology
6.
Cytokine Growth Factor Rev ; 58: 55-65, 2021 04.
Article in English | MEDLINE | ID: covidwho-1071239

ABSTRACT

SARS-CoV-2 is a recently identified coronavirus accountable for the current pandemic disease known as COVID-19. Different patterns of disease progression infer a diverse host immune response, with interferon (IFN) being pivotal. IFN-I and III are produced and released by virus-infected cells during the interplay with SARS-CoV-2, thus establishing an antiviral state in target cells. However, the efficacy of IFN and its role in the possible outcomes of the disease are not yet defined, as it is influenced both by factors inherent to the virus and to the host. The virus exhibits multiple strategies to counteract the innate immune response, including those shared by SARS-CoV and MERS-CoV and other novel ones. Inborn errors in the host may affect IFN-related effector proteins or decrease its levels in plasma upon neutralization by preexistent autoantibodies. This battle between the IFN response triggered upon SARS-CoV-2 infection, its magnitude and timing, and the efficacy of its antiviral tools in dispute against the viral evasion strategies together with the genetic factors of the host, generate a scenario whose fate contributes to defining the severity of COVID-19.


Subject(s)
Host-Pathogen Interactions , Interferon Type I/physiology , Interferons/physiology , SARS-CoV-2/immunology , Viral Proteins/physiology , Animals , Antiviral Agents/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Genetic Diseases, Inborn/complications , Genetic Diseases, Inborn/immunology , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunity, Innate/genetics , Interferon Type I/antagonists & inhibitors , Interferons/antagonists & inhibitors , Pandemics , SARS-CoV-2/pathogenicity
7.
Emerg Microbes Infect ; 9(1): 2685-2696, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-933805

ABSTRACT

The newly emerged betacoronavirus, SARS-CoV-2, causes the COVID-19 pandemic since December 2019 with more than 35 million laboratory confirmed human infections and over one million deaths within nine months. The genome of SARS-CoV-2 continues to evolve during the global transmission with the notable emergence of the spike D614G substitution that enhances infectivity. Some of these viral adaptations may alter not only the infectivity but also viral pathogenesis. Continuous phylogenomic analysis of circulating viral strains and functional investigation of new non-synonymous substitutions may help to understand the evolution of virus, its virulence and transmissibility. Here we describe a loss of an accessory protein orf3b (57 amino acids) in current circulating SARS-CoV-2 strains, contributing around 24% of more than 100,000 complete viral genomes analysed. The loss of 3b is caused by the presence of an early stop codon which is created by an orf3a Q57H substitution. There is an increasing trend in the loss of orf3b which has reached 32% in May 2020. Geographically, loss of 3b is more prevalent in certain countries including Colombia (46%), USA (48%), South Korea (51%), France (66%), Saudi Arabia (72%), Finland (76%) and Egypt (77%). Interestingly, the loss of 3b coincides with the emergence of spike D614G substitution. In addition, we found that truncated orf3b has lost the interferon antagonism compared to the full-length orf3b, suggesting a loss of function by the newly adapted virus. Further investigation of orf3b deletion and spike D614G substitution on virulence and infectivity respectively will provide important insights into SARS-CoV-2 evolution.


Subject(s)
Gene Deletion , SARS-CoV-2/genetics , Viral Proteins/genetics , Amino Acid Sequence , Cells, Cultured , Humans , Interferons/antagonists & inhibitors , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/immunology
8.
Virology ; 553: 35-45, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-922156

ABSTRACT

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Subject(s)
DNA, Complementary/isolation & purification , Deltacoronavirus/genetics , Swine/virology , Animals , Clone Cells , Coronavirus Infections/pathology , Deltacoronavirus/pathogenicity , Deltacoronavirus/physiology , Endoribonucleases/physiology , Interferons/antagonists & inhibitors , Virus Replication
9.
Vet Microbiol ; 247: 108785, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-827867

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.


Subject(s)
Coronavirus Infections/veterinary , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Interferons/antagonists & inhibitors , Animals , Cell Line , Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Interferon Regulatory Factor-1/antagonists & inhibitors , Interferon Regulatory Factor-1/immunology , Interferons/immunology , Intestines/cytology , Intestines/virology , Kidney/cytology , Kidney/virology , NF-kappa B/antagonists & inhibitors , NF-kappa B/immunology , Sendai virus/immunology , Signal Transduction/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/virology
10.
Emerg Microbes Infect ; 9(1): 1418-1428, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-595042

ABSTRACT

The Coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2 virus, is now causing a tremendous global health concern. Since its first appearance in December 2019, the outbreak has already caused over 5.8 million infections worldwide (till 29 May 2020), with more than 0.35 million deaths. Early virus-mediated immune suppression is believed to be one of the unique characteristics of SARS-CoV-2 infection and contributes at least partially to the viral pathogenesis. In this study, we identified the key viral interferon antagonists of SARS-CoV-2 and compared them with two well-characterized SARS-CoV interferon antagonists, PLpro and orf6. Here we demonstrated that the SARS-CoV-2 nsp13, nsp14, nsp15 and orf6, but not the unique orf8, could potently suppress primary interferon production and interferon signalling. Although SARS-CoV PLpro has been well-characterized for its potent interferon-antagonizing, deubiquitinase and protease activities, SARS-CoV-2 PLpro, despite sharing high amino acid sequence similarity with SARS-CoV, loses both interferon-antagonising and deubiquitinase activities. Among the 27 viral proteins, SARS-CoV-2 orf6 demonstrated the strongest suppression on both primary interferon production and interferon signalling. Orf6-deleted SARS-CoV-2 may be considered for the development of intranasal live-but-attenuated vaccine against COVID-19.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Endoribonucleases/metabolism , Exoribonucleases/metabolism , Interferons/antagonists & inhibitors , Interferons/metabolism , Methyltransferases/metabolism , Pneumonia, Viral/metabolism , RNA Helicases/metabolism , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism , Betacoronavirus/genetics , COVID-19 , Cell Line , Coronavirus Infections/genetics , Coronavirus Infections/virology , Endoribonucleases/genetics , Exoribonucleases/genetics , Host-Pathogen Interactions , Humans , Interferons/genetics , Methyltransferases/genetics , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA Helicases/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL