Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 12: 750279, 2021.
Article in English | MEDLINE | ID: covidwho-1551505

ABSTRACT

SARS-CoV-2 coronavirus infection induces heterogeneous symptoms, ranging from asymptomatic to lethal forms. Severe forms usually occur in the elderly and/or individuals with comorbidities. Children generally remain asymptomatic to primary infection, suggesting that they may have an effective local innate immune response. IFN-I and -III have non-redundant protective roles against SARS-CoV-2, although sometimes damaging the host. The expression and role of anti-viral peptides during SARS-CoV-2 infection have thus far been little studied. We aimed to identify the innate immune molecules present at the SARS-CoV-2 entry point. We analyzed the mRNA levels of type I (IFN-α and -ß) and type III (IFN-λ1-3) interferons and selected antiviral peptides (i.e., ß-defensins 1-3, α-defensins [HNP1-3, HD5] pentraxin-3, surfactant protein D, the cathelicidin LL-37 and interleukin-26) in nasopharyngeal swabs from 226 individuals of various ages, either infected with SARS-CoV-2 (symptomatic or asymptomatic) or negative for the virus. We observed that infection induced selective upregulation of IFN-λ1 expression in pediatric subjects (≤15 years), whereas IFN-α, IFN-ß, IFN-λ2/λ3, and ß-defensin 1-3 expression was unaffected. Conversely, infection triggered upregulation of IFN-α, IFN-ß, IFN-λ2/λ3, and ß-defensin 1-3 mRNA expression in adults (15-65 years) and the elderly (≥ 65 years), but without modulation of IFN-λ1. The expression of these innate molecules was not associated with gender or symptoms. Expression of the interferon-stimulated genes IFITM1 and IFITM3 was upregulated in SARS-CoV-2-positive subjects and reached similar levels in the three age groups. Finally, age-related differences in nasopharyngeal innate immunity were also observed in SARS-CoV-2-negative subjects. This study shows that the expression patterns of IFN-I/-III and certain anti-viral molecules in the nasopharyngeal mucosa of SARS-CoV-2-infected subjects differ with age and suggests that susceptibility to SARS-CoV-2 may be related to intrinsic differences in the nature of mucosal anti-viral innate immunity.


Subject(s)
/analysis , Interferon Type I/biosynthesis , Interferon-gamma/biosynthesis , Nasal Mucosa/immunology , SARS-CoV-2/immunology , beta-Defensins/biosynthesis , Adolescent , Adult , Age Factors , Aged , COVID-19/immunology , Cells, Cultured , Female , Humans , Immunity, Innate/immunology , Interferon Type I/immunology , Interferon-gamma/immunology , Interferons/biosynthesis , Interferons/immunology , Interleukins/biosynthesis , Interleukins/immunology , Male , Middle Aged , Nasopharynx/immunology , Young Adult , beta-Defensins/immunology
2.
Bull Exp Biol Med ; 172(1): 53-56, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1520385

ABSTRACT

The antiviral activity of recombinant human IFN-lambda type 1 (IFNλ-1) against culture strain of SARS-CoV-2 virus was determined by infecting a highly sensitive VeroE6 coronavirus cell culture after preincubation test (the cell monolayer was incubated with 4-fold dilutions of IFNλ-1 in a concentration range of 0.16-42,500 ng/ml in a culture medium for 12 h at 37°C) and without preincubation (simultaneous addition of different concentrations of IFNλ-1 and SARS-CoV-2 infection in a dose of 102 TCID50). The created recombinant human IFNλ-1 demonstrated obvious antiviral activity against SARS-CoV-2 virus in vitro. In the tests with and without preincubation, IFNλ-1 exhibited significant activity, although somewhat lower in variant with simultaneous addition of IFNλ-1 and virus to the cell culture. It should be noted that the antiviral effect of IFNλ-1 was observed in a wide range of concentrations.


Subject(s)
Antiviral Agents/pharmacology , Interferons/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , Viral Load/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , COVID-19/drug therapy , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Interferons/biosynthesis , Interferons/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Vero Cells , Viral Load/genetics
3.
Front Immunol ; 12: 718744, 2021.
Article in English | MEDLINE | ID: covidwho-1417083

ABSTRACT

COVID-19 associated multisystem inflammatory syndrome (MIS) is a rare condition mostly affecting children but also adults (MIS-A). Although severe systemic inflammation and multiorgan dysfunction are hallmarks of the syndrome, the underlying pathogenesis is unclear. We aimed to provide novel immunological and genetic descriptions of MIS-A patients. Cytokine responses (IL-6, IL-1ß, TNFα, CXCL10, type I, II and III interferons) following SARS-CoV-2 infection of peripheral blood mononuclear cells in vitro were analyzed as well as antibodies against IFNα and IFNω (by ELISA) in patients and healthy controls. We also performed whole exome sequencing (WES) of patient DNA. A total of five patients (ages 19, 23, 33, 38, 50 years) were included. The patients shared characteristic features, although organ involvement and the time course of disease varied slightly. SARS-CoV-2 in vitro infection of patient PBMCs revealed impaired type I and III interferon responses and reduced CXCL10 expression, whereas production of proinflammatory cytokines were less affected, compared to healthy controls. Presence of interferon autoantibodies was not detected. Whole exome sequencing analysis of patient DNA revealed 12 rare potentially disease-causing variants in genes related to autophagy, classical Kawasaki disease, restriction factors and immune responses. In conclusion, we observed an impaired production of type I and III interferons in response to SARS-CoV-2 infection and detected several rare potentially disease-causing gene variants potentially contributing to MIS-A.


Subject(s)
COVID-19/pathology , Cytokines/blood , Interferon-alpha/biosynthesis , Interferons/biosynthesis , Systemic Inflammatory Response Syndrome/pathology , Adult , Autoantibodies/blood , Chemokine CXCL10/biosynthesis , Comorbidity , Exome/genetics , Female , Humans , Interferon-alpha/immunology , Interferons/immunology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Whole Exome Sequencing , Young Adult
4.
Viruses ; 13(8)2021 08 12.
Article in English | MEDLINE | ID: covidwho-1355052

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air-liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.


Subject(s)
Bronchi/immunology , Bronchi/virology , Immunity, Innate , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/immunology , Aged , Aging/immunology , Bronchi/cytology , Bronchi/metabolism , COVID-19/immunology , Cell Death/genetics , Cells, Cultured , Cellular Senescence/genetics , Cytokines/biosynthesis , Cytokines/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Inflammation , Interferons/biosynthesis , Interferons/genetics , Male , RNA-Seq , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , SARS-CoV-2/physiology , Signal Transduction/genetics
5.
J Virol ; 94(16)2020 07 30.
Article in English | MEDLINE | ID: covidwho-1214962

ABSTRACT

The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.


Subject(s)
Exoribonucleases/metabolism , Interferon Type I/biosynthesis , Interferons/biosynthesis , Porcine epidemic diarrhea virus/physiology , RNA Caps/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Cell Line , Chlorocebus aethiops , Exoribonucleases/genetics , Gene Expression , Guanine/metabolism , Immunity, Innate , Methylation , Mutation , Porcine epidemic diarrhea virus/enzymology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , RNA, Viral/metabolism , S-Adenosylmethionine/metabolism , Swine , Vero Cells , Viral Nonstructural Proteins/genetics , Virus Replication
6.
J Med Virol ; 93(7): 4559-4563, 2021 07.
Article in English | MEDLINE | ID: covidwho-1162848

ABSTRACT

Coronavirus disease 2019 (COVID-19) is globally rampant, and to curb the growing burden of this disease, in-depth knowledge about its pathophysiology is needed. This was an observational study conducted at a single center to investigate serum cytokine and chemokine levels of COVID-19 patients, based on disease severity. We included 72 consecutive COVID-19 patients admitted to our hospital from March 21 to August 31, 2020. Patients were divided into Mild-Moderate I (mild) and Moderate II-Severe (severe) groups based on the COVID-19 severity classification developed by the Ministry of Health, Labor and Welfare (MHLW) of Japan. We compared the patient characteristics as well as the serum cytokine and chemokine levels on the day of admission between the two groups. Our findings indicated that the severe group had significantly higher levels of serum fibrinogen, d-dimer, lactate dehydrogenase, C-reactive protein, ferritin, Krebs von den Lungen-6, surfactant protein (SP)-D, and SP-A than the mild group. Strikingly, the levels of interleukin (IL)-28A/interferon (IFN)-λ2 were significantly lower in the severe group than in the mild group. We believe that reduced levels of type III interferons (IFN-λs) and alterations in the levels of other cytokines and chemokines may impact the severity of the disease.


Subject(s)
COVID-19/blood , Chemokines/blood , Interferons/blood , SARS-CoV-2/immunology , Adult , Aged , C-Reactive Protein/analysis , COVID-19/pathology , Down-Regulation , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrinogen/analysis , Humans , Interferons/biosynthesis , Interleukins/blood , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Mucin-1/blood , Pulmonary Surfactant-Associated Protein A/blood , Pulmonary Surfactant-Associated Protein D/blood , Severity of Illness Index
7.
Signal Transduct Target Ther ; 5(1): 299, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-997814

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.


Subject(s)
COVID-19/metabolism , DEAD Box Protein 58/metabolism , Interferon Type I/biosynthesis , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/biosynthesis , SARS-CoV-2/metabolism , Signal Transduction , Viral Matrix Proteins/metabolism , Animals , COVID-19/genetics , Chlorocebus aethiops , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Humans , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferons/genetics , Receptors, Immunologic , SARS-CoV-2/genetics , Vero Cells , Viral Matrix Proteins/genetics
8.
EMBO J ; 40(5): e105912, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-962496

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Models, Biological , Organoids/metabolism , SARS-CoV-2/physiology , Virus Replication , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/virology , Chlorocebus aethiops , Gene Expression Regulation , Humans , Interferon Type I/biosynthesis , Interferons/biosynthesis , Organoids/pathology , Organoids/virology , Vero Cells
9.
Int J Antimicrob Agents ; 56(3): 106118, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-704750

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is rapidly advancing across the globe despite drastic public and personal health measures. Antivirals and nutritional supplements have been proposed as potentially useful against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes COVID-19, but few have been clinically established. Lactoferrin (Lf) is a naturally occurring, non-toxic glycoprotein that is orally available as a nutritional supplement and has established in vitro antiviral efficacy against a wide range of viruses, including SARS-CoV, a closely related coronavirus to SARS-CoV-2. Furthermore, Lf possesses unique immunomodulatory and anti-inflammatory effects that may be especially relevant to the pathophysiology of severe COVID-19 cases. Here we review the underlying biological mechanisms of Lf as an antiviral and immune regulator, and propose its unique potential as a preventative and adjunct treatment for COVID-19. We hope that further research and development of Lf nutritional supplementation would establish its role for COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Immunologic Factors/therapeutic use , Lactoferrin/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Humans , Interferons/agonists , Interferons/biosynthesis , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Virus Internalization/drug effects , Virus Replication/drug effects
10.
Med Hypotheses ; 143: 110153, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-688792

ABSTRACT

Reports from various countries suggest that tobacco smoking might protect from SARS-CoV-2 infection, since the prevalence of smoking in COVID-19 hospitalized patients is lower than in the respective general population. Apart from nicotine or other chemicals contained in tobacco smoke, we propose that a single-stranded RNA virus that infects tobacco leaves, tobacco mosaic virus (TMV), might be implicated in this effect. TMV, though non-pathogenic, is found in smokers' airways, and stimulates adaptive and innate immunity, with release of specific antibodies and interferons. The latter may have preventive and/or therapeutic effects against COVID-19. If confirmed by epidemiological and interventional studies, this might lead to the use of TMV as an immunological adjuvant against SARS-CoV-2 infection and COVID-19 disease.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Models, Immunological , Pandemics , Pneumonia, Viral/immunology , Smokers , Tobacco Mosaic Virus/immunology , Tobacco Products/virology , Tobacco Smoking , Animals , Antibodies, Viral/biosynthesis , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Resistance , Humans , Interferons/biosynthesis , Mice , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2 , Tobacco Mosaic Virus/isolation & purification , Tobacco Smoking/epidemiology , Toll-Like Receptors/immunology
11.
Int J Antimicrob Agents ; 55(6): 105995, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-164767

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the previously unknown pathogen, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is now a global pandemic. There are no vaccines or specific treatments against this new virus; therefore, there is an urgent need to advance novel therapeutic interventions for COVID-19. Glycyrrhizin is a triterpene saponin with various biological functions and pharmacological effects. This brief article discusses the therapeutic potential of glycyrrhizin for the treatment of COVID-19 from the perspective of its pharmacological action, including binding angiotensin-converting enzyme II (ACE2), downregulating proinflammatory cytokines, inhibiting the accumulation of intracellular reactive oxygen species (ROS), inhibiting thrombin, inhibiting the hyperproduction of airway exudates, and inducing endogenous interferon.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Glycyrrhizic Acid/therapeutic use , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , COVID-19 , Cytokines/blood , Humans , Interferons/biosynthesis , Interferons/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Virus Attachment/drug effects , Virus Internalization/drug effects
12.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-60496

ABSTRACT

Type I and type III interferons (IFNs) are the frontline of antiviral defense mechanisms that trigger hundreds of downstream antiviral genes. In this study, we observed that MERS-CoV nucleocapsid (N) protein suppresses type I and type III IFN gene expression. The N protein suppresses Sendai virus-induced IFN-ß and IFN-λ1 by reducing their promoter activity and mRNA levels, as well as downstream IFN-stimulated genes (ISGs). Retinoic acid-inducible gene I (RIG-I) is known to recognize viral RNA and induce IFN expression through tripartite motif-containing protein 25 (TRIM25)-mediated ubiquitination of RIG-I caspase activation and recruitment domains (CARDs). We discovered that MERS-CoV N protein suppresses RIG-I-CARD-induced, but not MDA5-CARD-induced, IFN-ß and IFN-λ1 promoter activity. By interacting with TRIM25, N protein impedes RIG-I ubiquitination and activation and inhibits the phosphorylation of transcription factors IFN-regulatory factor 3 (IRF3) and NF-κB that are known to be important for IFN gene activation. By employing a recombinant Sindbis virus-EGFP replication system, we showed that viral N protein downregulated the production of not only IFN mRNA but also bioactive IFN proteins. Taken together, MERS-CoV N protein functions as an IFN antagonist. It suppresses RIG-I-induced type I and type III IFN production by interfering with TRIM25-mediated RIG-I ubiquitination. Our study sheds light on the pathogenic mechanism of how MERS-CoV causes disease.IMPORTANCE MERS-CoV causes death of about 35% of patients. Published studies showed that some coronaviruses are capable of suppressing interferon (IFN) expression in the early phase of infection and MERS-CoV proteins can modulate host immune response. In this study, we demonstrated that MERS-CoV nucleocapsid (N) protein suppresses the production of both type I and type III IFNs via sequestering TRIM25, an E3 ubiquitin ligase that is essential for activating the RIG-I signaling pathway. Ectopic expression of TRIM25 rescues the suppressive effect of the N protein. In addition, the C-terminal domain of the viral N protein plays a pivotal role in the suppression of IFN-ß promoter activity. Our findings reveal how MERS-CoV evades innate immunity and provide insights into the interplay between host immune response and viral pathogenicity.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/virology , DEAD Box Protein 58/metabolism , Interferon Type I/biosynthesis , Interferons/biosynthesis , Middle East Respiratory Syndrome Coronavirus/physiology , Nucleocapsid Proteins/metabolism , Signal Transduction , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Coronavirus Infections/genetics , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferons/genetics , Promoter Regions, Genetic , Protein Binding , Receptors, Immunologic , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL